313

ఇంటర్మీడియట్ (టాస్) కోర్సు

సీనియర్ సెకండరీ కోర్సు

రసాయన శాస్త్రం –III

(కోర్ మాద్యూల్స్)

తెలంగాణ ఓపెన్ స్కూల్ సొసైటీ (టీవోఎస్ఎస్), హైదారాబాద్ ఎస్సీఈఆర్టీ క్యాంపస్, ఎల్బీ స్టేడియం ఎదురుగా, బషీర్బాగ్, హైదారాబాద్–500 001 వెబ్ సైట్ www.telanganaopenschool.org తెలంగాణ ఓపెన్ స్కూల్ సొసైటీ

టింట్: 2023

కాబీల సంఖ్య:

దైరెక్టర్ తెలంగాణ గవర్నమెంట్ టెక్ట్స్ బుక్ (పెస్, మింట్ కాంపౌండ్, ఖైరతాబాద్, హైదరాబాద్, తెలంగాణ.

సీనియర్ సెకండరీ కోర్పు ఇంటర్మీడియట్ (టాస్) కోర్పు కెమిస్ట్రీ

ప్రధాన సలహాదారు

్రీమతి వాకాటి కరుణ, ఐ.ఎ.ఎస్.

ప్రభుత్వ కార్యదార్శి, విద్యాశాఖ, తెలంగాణ ప్రభుత్వం, హైదారాబాద్

పార్యపుస్తకాల ముద్రణ మండలి

శ్రీమతి ఎ.శ్రీదేవసేన, ఐ.ఎ.ఎస్.

డైరెక్టర్ ఆఫ్ స్కూల్ ఎద్యుకేషన్, తెలంగాణ, హైదారాబాద్

ල්. పి. ඩ. ල්హර

డైరెక్టర్, టాస్, తెలంగాణ, హైదారాబాద్

(శీ. ఎస్.(శీనివాస చారి

డైరెక్టర్, పార్యపుస్తక ముద్రణాలయం, తెలంగాణ, హైదారాబాద్

చిఫ్ కోఆల్డినేటర్

(శీ. మారసాని సోమిరెడ్డి

జాయింట్ డైరెక్టర్, టాస్, తెలంగాణ, హైదారాబాద్

సమన్యయకర్తలు

(శీ. బి.వెంకటేశ్వర్ రావు

రాష్ట్ర కోఆర్డినేటర్, టాస్, తెలంగాణ, హైదారాబాద్ రాష్ట్ర కోఆర్డినేటర్, టాస్, తెలంగాణ, హైదారాబాద్

తెలంగాణ ఓపెస్ స్కూల్ సాసైటీ (TOSS), హైదారాబాద్

ఎస్సీఈఆర్టీ క్యాంపస్, ఎల్బీ స్టేడియం ఎదురుగా, బషీర్బాగ్, హైదారాబాద్-500 001 తెలంగాణ.

శ్రీమతి గంట సరిత

సీనియర్ సెకండలీ కోర్ను ఇంటల్తీడియట్ (టాస్) కోర్సు

కెమిస్టీ-అదిషనల్ కలిక్కులమ్ కంటెంట్ డెవలప్ మెంట్ టీమ్

తెలుగు సంపాదకులు

ప్రాఫెసర్ యాదగిల బోన్గిల

డిపార్ట్ మెంట్ ఆఫ్ కెమిస్ట్రీ

యూనివర్నిటీ కాలేజ్ ఆఫ్ సైన్స్,

ఉస్తానియా యూనివల్లటీ

హైదరాబాద్

ఆంగ్ల సంపాదకులు దాం విప్రవ్ దత్ శుక్రా

కెమిస్టీ అసాసియేట్ ప్రాఫెసర్,

డిపార్ట్ మెంట్ ఆఫ్ కెమిస్ట్రీ

රතර්බූ රාංච් කම් සංච්ස්,

హైదరాబాద్

తెలుగు అనువాదకులు

దా॥ ఆర్. గంగాధర

M.Sc., PGDCA, Mphil, Ph.D

అసోసియేట్ (పొఫెసర్,

హెద్ డిపార్ట్మ్రాంట్ ఆఫ్ కెమిస్ట్రీ

స్పాన్లీ కాలేజ్ ఆఫ్ ఇంజనీరింగ్ అండ్ టెక్నాలజీ ఫర్ ఉమెన్ (అటానమస్)

హైదరాబాద్

శివకుమార్ యెలగందుల

దా॥ బి. మల్లిఖార్జున్ M.Sc., Ph.D

నారాయణ జూనియర్ కాలేజ్

హైదరాబాద్

లెక్చరర్ ఇన్ కెమిట్ట్

స్కూల్ అసిస్టెంట్

M.Sc., B.Ed, (Ph.D)

జెద్.పి.హెచ్.హెస్, పసునూర్

సూర్యాపేట జిల్లా

టెక్నికల్ సపోర్ట్ర్పర్సన్

వెంకటస్వామి వరికుప్పల

స్కూల్ అసిస్టెంట్

జెడ్.పి. హెచ్. హెస్, యాదవరం, బీబీపేట్ (మం), కామారెడ్డి (జిల్లా)

డి.టి.పి. లే అవుట్ డిజైనింగ్

పున్న. ధనలక్ష్మి M.A. Telugu, TPT, SET తెలుగు అధ్యాపకురాలు బేగంపేట ప్రభుత్వ మహిళా డిగ్రీ కళాశాల,

బేగంపేట, హైదరాబాద్

కవర్ పేజి డిజైనింగ్ అండ్ దృష్తాంతాలు

శ్రీ కె. సుధాకరాచారి యం.పి.యు.పి.యస్. మరిపెడ, ములుగు

ముందుమాట

ప్రియమైన అభ్యాసకుడు,

ఫార్మల్ ఎద్యుకేషన్ తరహాలో ఓపెన్ డిస్టెన్స్ లెర్నింగ్ (ఓడీఎల్) విధానంలో నాన్ ఫార్మల్ ఎద్యుకేషన్కు విద్యాశాఖ అంతే ప్రాధాన్యం ఇస్తోంది. 2008 వరకు అప్పర్ ప్రైమరీ స్థాయి వరకు కోర్సులను అందిస్తున్న, దేశంలో 1991లో ఏర్ఫాటైన తొలి స్టేట్ ఓపెన్ స్కూల్ ఇదే. 2008–2009 విద్యాసంవత్సరం నుంచి ఎస్.ఎస్.సి కోర్సును, 2010–2011 విద్యా సంవత్సరం నుంచి ఇంటర్మీడియట్ కోర్సును ప్రవేశపెట్టారు. ఓపెన్ స్కూల్ నుండి అర్హత పొందిన అభ్యాసకులు ఉన్నత చదువులు మరియు ఉపాధి రెండింటికీ అర్హులు. ఇప్పటివరకు ఓపెన్ స్కూళ్లలో 4,88,853 మంది విద్యార్థులు చేరగా, 2,86,663 మంది విజయవంతంగా తమ కోర్సులను పూర్తి చేశారు. అధికారిక విద్యా కలలను నెరవేర్చుకోలేని వారికి ఓపెన్ స్కూల్ విధానం రెండోసారి నేర్చుకునే అవకాశాన్ని కల్పిస్తోంది.

విద్యార్థలు సులభంగా పరీక్ష రాసేందుకు వీలుగా పాఠ్యపుస్తకాలతో పాటు స్టడీ మెటీరియల్ను సరఫరా చేయడం ద్వారా నాణ్యమైన విద్యను అందించేందుకు తెలంగాణ ప్రభుత్వం ఆసక్తి చూపుతోంది. సబ్జెక్టుల వారీగా బూ ప్రొంట్ల ఆధారంగా పాఠ్యాంశాలు, స్టడీ మెటీరియల్ తయారీలో అత్యంత అనుభవజ్ఞులైన నిపుణులు, సబ్జెక్టు నిపుణులు నిమగ్నమయ్యారు. 2023–24 విద్యాసంవత్సరానికి సంబంధించిన స్టడీ మెటీరియల్ను ముద్రించి రాష్ట్రవ్యాప్తంగా విద్యార్థులందరికీ అందజేస్తున్నారు.

నేషనల్ ఇన్ స్టిట్యూట్ ఆఫ్ ఓ పెన్ స్కూలింగ్, నేషనల్ కామన్ కోర్ కరిక్యులమ్ ఆధారంగా తెలంగాణ ఓ పెన్ స్కూలింగ్ సిస్టమ్ (TOSS) రివైజ్డ్ కెమిట్టీ కోర్సుకు స్వాగతం. ఈ కోర్సులో నాలుగు వాల్యూమ్ లు I, II మరియు IIIలు థియరీ భాగాన్ని కలిగి ఉంటాయి మరియు వాల్యూమ్ IV అనేది ప్రాక్టికల్ మాన్యువల్. మొదటి పుస్తకం మీ చేతుల్లో ఉంది. ఈ పుస్తకంలో రసాయన శాద్రం యొక్క కొన్ని ప్రాథమిక భావనలపై మాద్యూల్ 1 యొక్క ఒక పాఠం, పరమాణు నిర్మాణం మరియు రసాయన బంధంపై మాద్యూల్ 2 యొక్క మూడు పాఠాలు, పదార్ధ స్థితిపై మాద్యూల్ 3 యొక్క ఐదు పాఠాలు, కెమికల్ ఎనర్జిటిక్స్ పై మాద్యూల్ 4 యొక్క రెండు పాఠాలు మరియు కెమికల్ డైనమిక్స్ పై మాద్యూల్ 5 యొక్క ఐదు పాఠాలు ఉన్నాయి. మాద్యూల్ 1లో రసాయన చర్యల్లో పాల్గొనే పరమాణువులు, అణువులు మరియు అయాన్ల సంఖ్యను లెక్కించడానికి ఉపయోగించే వివిధ యూనిట్ల గురించి మీరు నేర్చుకుంటారు. మాద్యూల్ 2 పరమాణువుల లోపల ఏమి ఉంది మరియు పరమాణువులు కలిసే వివిధ రకాల రసాయన బంధాల గురించి మీకు తెలియజేస్తుంది. మాద్యూల్ 3 పదార్థం యొక్క మూదు స్థితులైన ఘన, ద్రవ మరియు వాయువు యొక్క వివిధ అంశాలను వివరిస్తుంది. [దావణాలు మరియు కొల్లాయిడ్ల యొక్క లక్షణాల గురించి కూడా మీరు నేర్చుకుంటారు. మాద్యూల్ 4 శక్రి మార్ఫులతో పాటు రసాయన చర్యలు మరియు అంతర్గత శక్రి, ఎంథాల్ఫి, ఎంట్రోపీ మరియు సహజత్వం పంటి ప్రాథమిక భావనల గురించి వివరిస్తుంది. మాద్యూల్ 5 కెమికల్ డైనమిక్స్ యొక్క లక్షణాలు,

V

ఎలక్ర్రోకెమిట్టీ, ఎలక్ర్రోకెమికల్ సెల్స్లో రసాయన శక్తిని విద్యుత్ శక్తిగా మార్చడం యొక్క ఉత్రేరక ఇంటర్ కన్వర్షన్ పై హైలైట్ చేస్తుంది. మీరు కోర్సును అస్వాదిస్తారని మరియు అసక్తికరంగా కనుగొంటారని మేము అశిస్తున్నాము.

ఓపెన్ స్కూల్లలో చదివే విద్యార్థలు స్టడీ మెటీరియల్ను సద్వినియోగం చేసుకొని భవిష్యత్ అవకాశాలను ఉ జ్వలంగా తీర్చిదిద్దాలని, బంగారు తెలంగాణ నిర్మాణంలో ముందుకు సాగాలని ఆకాంక్షించారు.

హ్యాపీ కెమిస్టీ లెర్నింగ్ కావాలంటూశుభాకాంక్షలతో.....

WRITERS

స్టడీ మెటీరియల్ని ఎలా ఉపయోగించాలి

ఓపెన్ అండ్ డిస్టెన్స్ లెర్నింగ్లో కెమిస్టీ నిపుణుల టీమ్ ఈ లెర్నింగ్ మెటీరియల్ను అభివృద్ధి చేసింది. స్వీయ అధ్యయనం కోసం స్థిరమైన ఫార్మాట్ అభివృద్ధి చేయబడింది. (పింట్ మెటీరియల్ను ఎలా సద్వినియోగం చేసుకోవాలో ఈ (కింది అంశాలు మీకు ఒక ఆలోచనను ఇస్తాయి.

శీర్షిక అనేది అద్వాన్స్ ఆర్గనైజర్ మరియు పాఠం యొక్క విషయాల గురించి ఒక ఆలోచనను తెలియజేస్తుంది.

పరిచయం పాఠంలోని విషయాలను హైలైట్ చేస్తుంది మరియు మీ పూర్ప జ్ఞానంతో పాటు మన తక్షణ వాతావరణంలో అమలులో ఉన్న సహజ దృగ్విషయాలతో సంబంధం కలిగి ఉంటుంది. క్షుణ్ణంగా చదవండి. మీరు పాఠం నేర్చుకున్న తర్వాత లక్ష్యాలు మీరు కోరుకున్న విజయాలతో విషయాలను అనుసంధానిస్తాయి. ఇవి గుర్తుంచుకోండి.

పాఠ్యాంశాలను కాన్సెప్ట్ల్ థీమాటిక్ యూనిటీని బట్టి సెక్షన్లు, సబ్ సెక్షన్ లుగా విభజి ంచారు. టెక్ట్స్ ని జాగ్రత్తగా చదవండి మరియు పేజీ యొక్క సైడ్ మార్జిన్ పై నోట్స్ తయారు చేసుకోండి. (పతి విభాగాన్ని పూర్తి చేసిన తర్వాత ఇంటెక్ట్స్ ప్రశ్నలకు సమాధానాలు రాసి న్యూమరికల్ (ప్రాబ్లమ్స్ మీరే పరిష్కరించుకోవాలి. ఇది మీ అవగాహనను తనిఖీ చేయడానికి మీకు అవకాశం ఇస్తుంది. ఒక విభాగంపై పట్టు సాధించే వరకు చదావడం కొనసాగించాలి. కొన్ని చోట్ల ఇటాలిక్స్ల్, బోల్డ్గా కొన్ని టెక్ట్స్ కనిపిస్తాయి. ఇది ముఖ్యమైనదానిని సూచిస్తుంది. మీరు వాటిని నేర్చుకోవాలి.

సాల్వ్ ఉదాహరణలు భావనలను అర్థం చేసుకోవడానికి మరియు మీ ఆలోచనలను పరిష్కరించడానికి మీకు సహాయపడతాయి. (పాబ్లమ్ సాల్వింగ్ అనేది నిజానికి ఫిజిక్స్ టైనింగ్లో అంతర్భాగం. వాటిని మీరే చేయండి మరియు ఒక నిర్దిష్ట ఉదాహరణ ద్వారా బోధించబడుతున్న ప్రధాన భావనను గమనించండి.

కార్యకలాపాలు సరళమైన ప్రయోగాలు, ఇవి మీ ఇంట్లో లేదా పని ప్రదేశంలో సులభంగా లభించే (తక్కువ ఖర్చు) పదార్థాలను ఉపయోగించి చేయవచ్చు. ఇలా చేయడం ద్వారా ఫిజిక్స్**ను అర్థం చేసుకోవడానికి ఇవి మీకు** సహాయపడతాయి. వాటిని మీరే చేయండి మరియు మీ పరిశోధనలను మీ పరిశీలనలతో అనుసంధానించండి.

ప్రతి విభాగంలో చర్చించిన భావనల ఆధారంగా ఇంటెక్ట్ర్ ప్రశ్నలు ఉంటాయి. ఈ ప్రశ్నలకు దిగువ ఇవ్వబడ్డ స్థలంలో మీరే సమాధానం ఇవ్వండి మరియు తరువాత పాఠం చివరలో ఇవ్వబడ్డ మోడల్ సమాధానాలతో మీ సమాధానాలను తనిఖీ చేయండి. ఇది మీ పురోగతిని అంచనా వేయడానికి మీకు సహాయపడుతుంది. మీ సమాధానాల నాణ్యత మరియు ప్రామాణికతతో మీరు సంతృప్తి చెందకపోతే, పేజీలను వెనక్కి తిప్పండి మరియు విభాగాన్ని మళ్లీ చదవండి.

vii

మీరు నేర్చుకున్నది త్వరిత పునశ్చరణ కోసం అభ్యాస పాయింట్ల సారాంశం. మీరు ఈ జాబితాలో మరిన్ని పాయింట్లను జోడించాలనుకోవచ్చు. వీటికి సునిశితంగా సమాధానాలు ఇస్తే చిన్న, పొడవైన, సంఖ్యాపరమైన ప్రశ్నల రూపంలో టెర్మినల్ ఎక్సర్ సైజులు సబ్జెక్టుపై దృక్పథాన్ని పెంపొందించుకోవడానికి దోహదపడతాయి. మీ ప్రతిస్పందనలను మీ తోటివారు లేదా కౌన్సిలర్లతో చర్చించండి.

టెక్ట్స్ ప్రశ్నలకు సమాధానాలు: ఇంటెక్ట్స్ ప్రశ్నలకు మీరు ఎంత కరెక్ట్ర్గా సమాధానాలు ఇచ్చారో తెలుసుకోవడానికి ఇవి మీకు సహాయపడతాయి. వీడియో: మీ సబ్జెక్టుకు సంబంధించిన కొన్ని అంశాలపై వీడియో ప్రోగ్రామ్లు రూపొందించారు. మీరు వీటిని మీ అధ్యయన కేంద్రంలో చూడవచ్చు లేదా (పైస్డ్ పబ్లికేషన్ యూనిట్, NIOS నుంచి CD ను కొనుగోలు చేయవచ్చు.

అభ్యాసం కోసం మీరు యాక్సెస్ చేయగల కొన్ని ఎంపిక చేయబడిన వెబ్ఫైట్లు ఇవి. దూరం నుంచి చదవడానికి స్వీయ (పేరణ, స్వీయ క్రమశిక్షణ, స్వీయ నియండ్రణ అవసరం. కాబట్టి క్రమం తప్పకుండా చదువుకునే అలవాటును పెంచుకోవాలి. రోజువారీ షెడ్యూల్ గీయడం ఈ ప్రయత్నంలో మీకు సహాయపడుతుంది. మీరు మీ ఇంటిలో బాగా వెలుతురు వచ్చే మరియు బాగా వెలుతురు ఉన్న స్థలాన్ని మీ అధ్యయనం కోసం కేటాయించాలి. అయితే, ఇది శబ్దం చేయకూడదు లేదా మీ పని నుండి మీ ఏకాగ్రతను మరల్చకూడదు.

కెమిస్ట్రీ చదివిన తర్వాత కెరీర్ అవకాశాలు

కెమికల్ సైన్సెస్ (కెమిస్టీ) విస్తృత (శేణి కెరీర్లకు ప్రాపృతను అందిస్తుంది. రసాయన శాస్త్రం అంటే పదార్ధాల, వాటి అలంకరణ మరియు అనువర్తనాల అధ్యయనం. వాస్తవానికి, ఇది అన్ని పదార్ధాల అధ్యయనం మరియు మన జీవితంలోని ప్రతి అంశానికి ముఖ్యమైనది. ఆర్గానిక్ కెమిస్టీ, ఇనార్గానిక్ కెమిస్టీ, అనలిటికల్ కెమిస్టీ, బయోకెమిస్టీ కెమిస్టీ ప్రధాన విభాగాలు. కెమిస్టీలో కెరియర్ ఆప్షన్స్ ప్రాక్టికల్గా అంతులేనివి! అయితే విద్య, శిక్షణ, అనుభవం ఎంత వరకు తీసుకున్నారనే దానిపై ఉద్యోగావకాశాలు ఆధారపడి ఉంటాయి. కెమిస్టీ లేదా బయోకెమిస్టీ డిగీ మెడిసిన్, ఎఫార్మకాలజీ, అగ్రికల్చర్, కెమికల్ ఇంజనీరింగ్, ఫోరెన్సిక్ సైన్స్ వంటి వృత్తుల్లో కెరీర్ మార్గాలకు దారితీస్తుంది. సీనియర్ సెకందరీ స్థాయిలో కెమిస్టీ చదివిన తర్వాత కొన్ని ముఖ్యమైన కెరీర్ అవకాశాలు ఇలా ఉన్నాయి

హేతుబద్దత

సీనియర్ సెకండరీ దశలో పాఠశాల విద్య యొక్క ప్రస్తుత పథకం ప్రకారం, రసాయనశాస్త్రం ఒక ప్రత్యేక విభాగంగా ఉద్భవిస్తుంది. ఈ దశలోనే తగిన భావనాత్మక పునాదిని అందించడంపై ప్రధానంగా దృష్టి సారించాలి. టాస్ లో ప్రస్తుత సీనియర్ సెకండరీ స్థాయి కెమిస్ట్రీ (313) కోర్సును NIOS (నేషనల్ ఇన్ స్టిట్యూట్ ఆఫ్ ఓపెన్ స్కూలింగ్), కామన్ కోర్ కరిక్యులమ్ ప్రకారం సవరించడం జరిగింది.

్రపస్తుత కెమిస్ట్రీ కోర్సు ప్రాథామికంగా ఇతివృత్తాల చుట్టూ అభివఅద్ధి చేయబడింది: రసాయన చర్యలు ఎందుకు సంభవిస్తాయి? ఒక రసాయన చర్యలో చర్యా భాగాల మధ్య పరిమాణాత్మక సంబంధం ఏమిటి? రసాయన చర్య ఎంత దూరం మరియు ఎంత వేగంగా జరుగుతుంది

రసాయనిక చర్య జరుగుతుందో లేదో నిర్ధిష్ట షరతులతో మనం అంచనా వేయగలమా? ఒక రసాయన పదార్ధం యొక్క నిర్మాణం మరియు దాని విధులు/ధర్మాల మధ్య సంబంధం ఏమిటి? దైనందిన జీవితానికి మరియు రసాయన పరిశ్రమలకు కొత్త రకాల పదార్ధాలు మరియు పదార్ధాలను పొందడానికి రసాయన ప్రతిచర్య ఏ విధంగా సంబంధం కలిగి ఉంటుంది? కోర్సును మరింత అర్థవంతంగా మరియు క్రియాత్మకంగా చేయడానికి కొన్ని ఇంటర్ డిసిప్లినరీ అంశాలను కూడా అందించారు.

అభ్యాసకుడు వీటిని చేయగలడని ఆశించబడుతుంది:

వివిధ రసాయన ప్రక్రియలు/చర్యలకు కారణమైన రసాయన శాస్త్ర సూత్రాలు, సిద్ధాంతాలు మరియు నియమాలను అర్థం చేసుకోవడం,పరిశ్రమలు మరియు దైనందిన జీవితంలో ఉపయోగపడే అనేక మూలకాలు (లోహాలు/ అలోహాలు) మరియు సమ్మేళనాల ఉత్పత్తిలో రసాయనశాస్త్రం యొక్క పాత్రను గుర్తించడం,

అతడు/ఆమె చుట్టూ ఉన్న అకర్బన మరియు సేంద్రీయ పదార్ధాల యొక్క రసాయన స్వభావాన్ని అర్థం చేసుకోవడం, కెమిస్ట్రీ పరిజ్ఞానం ఆధారంగా అతనికి/ఆమెకు నచ్చిన వివిధ వృత్తిపరమైన మరియు అనువర్తిత కోర్సులను ఎంచుకోండి.

ఇది కాకుండా, ప్రస్తుత కోర్సు అభ్యాసకుడిలో ఈ క్రింది సామర్థ్యాన్ని అభివృద్ధి చేయడం కూడా లక్ష్యంగా పెట్టుకుంది:

రసాయన చర్యలు మరియు రసాయన సమ్మేళనాల గురించి తెలుసుకోవడం కొరకు రసాయన గణనలు నిర్వహించడం,

రసాయన చర్యలు, భావనలు మరియు దృగ్విషయాలను వివరించడం,

రసాయన పదార్శాల ఉపయోగాలు మరియు దుర్వినియోగం గురించి అవగాహన పెంపొందించడం,

పరికరాలను అమర్చడం/సెట్ చేయడం, పరికరాలు మరియు రసాయనాలను సరిగ్గా హ్యాండిల్ చేయడం వంటి నైపుణ్యాలను అభివృద్ధి చేయడం మరియు సరళ సమ్మేళనాలను విశ్లేషించి సంశ్లేషణ చేయండి.

కోర్సు యొక్క ప్రత్యేక లక్షణాలు

ప్రస్తుత కెమిట్టీ కోర్సు యొక్క అకడమిక్ స్టాండర్డ్ ఏదైనా స్టేట్ ఎద్యుకేషన్ బోర్డ్ లేదా సెంటల్ బోర్డ్ ఆఫ్ సెకండరీ ఎద్యుకేషన్ యొక్క కెమిట్టీ కోర్సుతో పోల్చదగినది. కెమిట్టీ యొక్క సమగ్ర దృక్పథాన్ని అర్థం చేసుకోవడంలో ప్రతి పాఠం పాత్ర పోషిస్తుంది అనేది కోర్సు వెనుక ఉన్న హేతుబద్ధత. ప్రస్తుత కోర్సులో ఎనిమిది మాడ్యూల్స్ మరియు ఒక ప్రయోగశాల మాన్యువల్ ఉన్నాయి. సీనియర్ సెకండరీ పరీక్షకు హాజరయ్యే విద్యార్థికి మొత్తం ఎనిమిది మాడ్యూల్స్ మరియు ప్రాక్టికల్, మాన్యువల్ను అందించాల్సి ఉంటుంది.

కోర్సు నిర్మాణం

రివైజ్డ్ కెమిస్ట్రీ కోర్సులో మూడు భాగాలు ఉంటాయి, I, IIమరియు IIIలో థియరీ భాగం మరియు పార్ట్ IV (పాక్టికల్ మాన్యువల్. థియరీ పార్ట్ 1, 2, 3లో ఎనిమిది మాడ్యూల్స్ ఉంటాయి. పార్ట్–1లో ఐదు మాడ్యూల్స్ ఉ ంటాయి: కెమిస్ట్రీ, అటామిక్ స్ట్రక్చర్ అండ్ కెమికల్ బాండింగ్, స్టేట్స్ ఆఫ్మ్యాటర్, కెమికల్ ఎనర్జిటిక్స్, కెమికల్ డైనమిక్స్. పార్ట్–2లో కెమిస్ట్రీ ఆఫ్ ఎలిమెంట్స్ అండ్ కెమిస్ట్రీ ఆఫ్ ఆర్గానిక్ కాంపౌండ్స్, పార్ట్–3లో ఎన్విరాన్మెంటల్ కెమిస్ట్రీ అండ్ కెమిస్ట్రీ అండ్ ఇండస్ట్రీ అనే రెండు మాడ్యూల్స్ ఉంటాయి. ప్రతి మాడ్యూల్ను విభిన్న పాఠాలుగా విభజి ంచారు.

లెర్నింగ్ మెటీలియల్ యొక్క అవలీకనం

పుస్తకం - 1

మాడ్యూల్ – \mathbf{I} : పరమాణువులు, అణువులు మరియు రసాయన అర్థమెటిక్స్

- 01. మోల్ భావన (మోల్ కాన్సప్ట్)
- 02. రసాయన అంక గణితం

మాడ్యూల్ – II: పరమాణు నిర్మాణం మరియు రసాయన బంధం

03. పరమాణు నిర్మాణం

04. ఆవర్తన పట్టిక, పరమాణు ధర్మాలు–లక్షణాలు

05. రసాయన బంధం

మాద్యూల్ - III: పదార్థ స్థితి

- 06. వాయు స్థితి
- 07. ద్రవ స్థితి

08. ఘన స్థితి

09. ద్రావణాలు

10. కొల్లాయిద్దు

మాడ్యూల్ – IV: రసాయన శక్తి శాస్త్రం

11. రసాయన ఉష్ణగతిక శాస్ర్రం

12. రసాయనిక చర్యల స్వచ్ఛందత

మాడ్యూల్ – V: రసాయన గతికాంశాలు

13. రసాయన సమతాస్థితి

- 14. అయానిక్ సమతాస్థితి
- 15. విద్యుత్ రసాయన శాగ్రం(ఎలక్ర్లోకెమిస్ట్రీ)
- 16. రసాయన గతికశాగ్రం (కెమికల్ కైనెటిక్స్)
- 17. అధిశోషణం మరియు ఉత్ప్రేరణం

තුస్తకము-2

మాడ్యూల్ – VI: మూలాకాల రసాయన శాస్త్రం

- 18. లోహాల ఉనికి మరియు నిష్కర్పణ
- 19. హైద్రోజన్ మరియు ఎస్ బ్లాక్ మూలకాలు
- 20. సాధారణ లక్షణాలు $p ext{-block}$ మూలకాల సాధారణ ధర్మాలు
- 21. p–బ్లాక్ మూలకాలు మరియు వాటి సమ్మేళనాలు I
- 22. p-బ్లాక్ మూలకాలు మరియు వాటి సమ్మేళనాలు II
- 23. d–బ్లాక్ మరియు f–బ్లాక్ మూలకాలు
- 24. సమన్వయ సమ్మేళనాలు

మాడ్యూల్ – VII: కెమిస్ట్రీ ఆఫ్ ఆర్గానిక్ సమ్మేళనాలు (కర్భన రసాయన శాస్త్రం)

- 25. నామకరణం మరియు సాధారణ నియమములు
- 26. హైదోకార్బన్లు
- 27. కర్బన హలోజన్ సమ్మేళనాలు (హాలోఅల్కేస్లు మరియు హాలోఎరీన్లు)
- 28. ఆల్కహాల్స్, ఫినాల్స్ మరియు ఈథర్స్
- 29. ఆర్డిహైడ్లు, కీటోన్లు మరియు కార్భాకృలిక్ ఆమ్లాలు
- 30. కర్బన నైటోజన్ సమ్మేళనాలు
- 31. జీవాణువులు (బయోమాలిక్యూల్స్)

పుస్తకం - 3

మాడ్యూల్ VIIA: ఎన్విరాన్ మెంటల్ కెమిస్ట్రీ (పర్యావరణ రసాయన శాస్త్రం)

- 32. పర్యావరణ సంబంధాలు
- 33. వాయు కాలుష్యం
- 34. జల కాలుష్యం
- 35. భారలోహ మాలిన్యత మరియు రేడియోధార్మిక కాలుష్యం
- 36. ధ్వని మరియు నేల కాలుష్యం

మాడ్యూల్ VIIIB: కెమిస్ట్రీ అండ్ ఇండస్ట్రీ (రసాయన శాస్త్రం-పరిశ్రమలు)

- 32. పెట్రోకెమికల్స్(పెట్రో రసాయనాలు)
- 33. పాలిమర్లు
- 34. అద్దకాలు, రంగులు మరియు మరియు వర్ణదవ్యాలు
- 35. మందులు మరియు ఔషధాలు (డ్రగ్స్ మరియు మెడిసిన్)
- 36. భవన నిర్మాణ పదార్థాలు

విషయ సూచిక

పుస్తకం - 3

మాద్యూల్	పాఠం పేరు	పేజీ నెంబరు
VIII (A)	32. పర్యావరణ సంబంధాలు	1-10
పర్యావరణ రసాయన శాస్త్రం	33. వాయు కాలుష్యం	11-31
	34. జల కాలుష్యం	32-50
	35.భారలోహ మాలిన్యత మరియు	
	రేడియోధార్మిక కాలుష్యం	51-66
	36.ధ్వని మరియు నేల కాలుష్యం	67-74
VIII (B)	32. పెట్రో రసాయనాలు	75-91
రసాయన శాస్త్రం–పరిశ్రమలు	33. పాలిమర్లు	92-121
	34. అద్దకాలు, రంగులు మరియు వర్ణదవ్యాలు	122-137
	35. మందులు మరియు ఔషధాలు	
	(ద్రగ్స్ మరియు మెడిసిన్)	138-157
	36. భవన నిర్మాణ పదార్ధాలు	158-175

32. A పర్యావరణ ఆందోళనలు

జీవరాశి మనుగడకు అనుకూలమైన ఏకైక గ్రహం భూమి. జీవరాశికి అవసరమైన ఉష్ణోగ్రత, గాలి, నీరు, నేల ఉన్నాయి. ఓజోన్ పొర ద్వారా బాహ్య అంతరిక్షం నుండి హానికరమైన కిరణాల నుండి జీవులు రక్షించబడుతున్నాయి. మానవుని జనాభా మరియు దైనందిన కార్యకలాపాల ద్వారా గాలి, నీరు, నేల మరియు ఇతర సహజ వనరుల నాణ్యత క్షీణించి, జీవుల ఉపయోగం కోసం అనర్హమౌతున్నది. ఇది అవాంఛనీయ ప్రభావాలను కలిగిస్తుంది. ఈ పాఠం ద్వారా మీరు కాలుష్య కారకాల మూలాలు మరియు పర్యావరణంపై వాటి ప్రభావాల గురించి నేర్చుకుంటారు. ఈ విధంగా, పర్యావరణ కాలుష్యం అనేక విధాలుగా భూమిపై మానవుడితో సహా అనేక జీవుల ఉనికికి ప్రమాదకారిగా మారింది. అందువల్ల, పర్యావరణానికి హాని కలిగించేది ఏదైనా అందోళన కలిగించే విషయంగా పరిగణించాలి.

లక్ష్యాలు

ఈ పాఠాన్ని చదివిన తర్వాత మీరు వీటిని చేయగలరు:

- పర్యావరణం మరియు జీవావరణాన్ని నిర్వచించడం
- వివిధ పర్యావరణ విభాగాలను వేరు చేయడం
- పర్యావరణానికి ముఫ్పుల స్వభావాన్ని వివరించడం
- కాలుష్య కారకాలు మరియు దాని రకాలను నిర్వచించడం
- కాలుష్య కారకాల జాబితా మరియు
- ముఖ్యంగా పర్యావరణం, జీవులు మరియు మానవులపై కాలుష్య కారకాల ప్రభావాలను వివరించడం

32.1 పర్యావరణం యొక్క భాగాలు

పర్యావరణ నిర్వచనం:

పర్యావరణాన్ని బయోటిక్ మరియు అబయోటిక్ పరిసరాలుగా నిర్వచించవచ్చు.

- (i) వాతావరణంలోని అబయోటిక్ భాగాలు గాలి, నీరు, నేల, శక్తి రేడియేషన్ మొదలైనవి.
- (ii) పర్యావరణంలోని బయోటిక్ భాగాలు సూక్ష్మజీవులు (బాక్టీరియా, ఆల్గే మరియు శిలీంద్రాలు వంటివి), మొక్కలు, జంతువులు మొదలైనవి.

32.2 పర్యావరణ విభాగాలు

పర్యావరణం నాలుగు (04) విభాగాలను కలిగి ఉంటుంది.

- (i) బయోస్పియర్ (ii) వాతావరణం (అట్మాస్పియర్)
- (iii) హైద్రోస్పియర్ (iv) లిథోస్పియర్
- (i) జయోస్పియర్: భూమి మీద జీవులు జీవించి పునరుత్పత్తి చేయగల భాగాన్ని జయోస్పియర్ అంటారు. జీవుల

మనుగడ తమ మధ్య మరియు పర్యావరణంలోని వివిధ భాగాలతో సున్నితమైన సమతుల్యతపై ఆధారపడి ఉంటుంది. పర్యావరణ నాణ్యతలో ఏదైనా భంగం, నష్టం లేదా ప్రతికూల మార్పు జరిగిన జీవుల మనుగడ మరియు [శేయస్సుకు ముప్పు కలిగిస్తుంది.

(ii) వాతావరణం (అట్మాస్పియర్): అక్సిజన్ వాయువు మరియు నీటి అవిరి ఉనికిలో ఉన్న ఏకైక (పదేశం వాతావరణం. వాతావరణం అనేది భూమి చుట్టూ ఉండే పలుచని గాలి పొర (వాయువుల మిశ్రమం), ఇది అన్ని జీవులకు ఆధారం. (iii) హైదోస్పియర్: జీవావరణంలో నీరు ముఖ్యమైన పాత్ర పోషిస్తుంది. నీరు లేకుండా జీవితం అసాధ్యం. హైద్రోస్పియర్ అనేది భూమిలో అన్ని రకాల నీటి వనరులు ఉన్న భాగం అనగా మహాసముద్రాలు, సముద్రాలు, నదులు, సరస్సులు, హిమానీనదాలు, మంచుకొండలు, భూగర్బజలాలు మొదలైనవి.

(iv) **రిథోస్పియర్:** మట్టి రిథోస్పియర్తో ఒక భాగం. రిథోస్పియర్ అనేది భూమిలో అన్ని రకాల ఖనిజాలు, లోహాలు, సేంద్రీయ పదార్థాలు, రాళ్ళు, నేలలు మొదలైన వాటి ఉనికిలో ఉన్న భాగం.

32.3 పర్యావరణ హాని కారకాలు:

అనేక కారణాల వల్ల పర్యావరణం దెబ్బతింటుంది. నష్టం చిన్న ప్రాంతంలో ఉండవచ్చు లేదా చాలా పెద్ద ప్రాంతాన్ని ప్రభావితం చేయవచ్చు మరియు దాని ప్రభావాలు ప్రపంచవ్యాప్తంగా కనిపించవచ్చు.

1. వాహనాల ద్వారా: శిలాజ ఇంధనాల (పెట్రోల్ మరియు డీజిల్) వాహన దహనం కార్బన్ మోనాక్ష్రెడ్ (CO), కార్బన్ దయాక్ష్రెడ్ (CO₂) మరియు సల్ఫర్ దయాక్ష్రెడ్ (SO₂)లను వాతావరణంలోకి విడుదల చేస్తుంది. SO₂ వాతావరణంలోని నీటి బిందువులతో కలిసి సల్ఫ్యూరిక్ ఆమ్లం (H₂SO₄) ఏర్పడుతుంది. సల్ఫ్యూరిక్ ఆమ్లం వాతావరణంలో ఆమ్ల వర్షాన్ని కలిగిస్తుంది మరియు పర్యావరణాన్ని దెబ్బతీస్తుంది.

యాసిడ్ వర్వం యొక్క పర్యావరణ ప్రభావాలు:

(ఎ) నేల నుండి పోషకాలను తొలగించడం మరియు

(బి) సున్నపురాయి మరియు పాలరాయి వంటి ప్రాథమిక పదార్థాలు తుప్పు పట్టడం.

2. పురుగుమందులు: ముఖ్యంగా DDT (Di Chloro Di Phynyl Tri chloro Ethane) మరియు Di eldrineను దోమలు మరియు వ్యవసాయ తెగుళ్లను నియంత్రించడానికి ఉపయోగిస్తారు . వీటివలన గాలి, నీరు మరియు నేల కలుషితం అవుతోంది. సహజ పరిస్థితులలో దీర్ఘకాలం ఉండటం (బయోడిగ్రేడబుల్ కానివి) వలన పురుగుమందులు మట్టిలోనే ఉంటాయి. వాటి దుష్పరిణామాలు స్థానికంగా పర్యావరణాన్ని దెబ్బతీస్తున్నాయి.

 పరిశ్రమలు: ఉక్కు ఎరువులు మరియు పెట్రోలియం వంటి వివిధ పరిశ్రమలు సీసం (Pb), కాడ్మియం (Cd), జింక్ (Zn), ఆర్సెనిక్ (As), నికెల్ (Ni) మరియు పాదరసం (Hg) వంటి విషపూరిత కాలుష్య కారకాలకు మూలాలు. ఈ విషపూరిత లోహాలు స్థానిక పర్యావరణానికి పెనుముప్పు కలిగిస్తున్నాయి.

1. మన దేశంలో కాలుష్యం కారణంగా పర్యావరణ ప్రమాదాల యొక్కరెండు ఉదాహరణలు క్రింద ఉటంకించబడ్డాయి:

(i) మధుర రిఫైనరీ నుండి వెలువడే SO₂ వంటి వ్యర్థాలు తాజ్ మహల్కు చాలా తీవ్రమైన ముప్పును కలిగిస్తున్నాయి.
(ii) భోపాల్లోని యూనియన్ కార్పైడ్ కర్మాగారాల నుండి 2 డిసెంబర్ 1984న MIC (మిథైల్–ఐసోసైనేట్) లీకేజీ కారణంగా సంభవించిన దుర్ఘటన వేలాది మందిని చంపింది మరియు MICకి గురైన వారి ఆరోగ్యాన్ని ప్రభావితం చేసింది.

 2. క్లోరో ఫ్లోరో కార్బన్లు (CFCలు), రిడ్రిజెరెంట్లుగా ఉపయోగించబడతాయి మరియు వివిధ రకాల (స్పేలు లేదా సోల్లు (ఉదా. పెర్ఫ్యూమ్లు, ఎయిర్ (ఫెషనర్ మొదలైనవి). CFCలు ఓజోన్ పొరలో రంధ్రాలను కలిగిస్తాయి.
 3. ఓజోన్ రంధ్రాల ద్వారా ఎక్కువ అతినీలలోహిత వికిరణాలు భూమిని చేరుకుంటాయి మరియు భూమి నుండి (పతిబింబించే రేడియేషన్లు, CO₂, నీటి ఆవిరి ద్వారా గ్రహించబడతాయి. తద్వారా భూమి ఉపరితలం వేడెక్కుతుంది. ఈ (పభావాన్ని గ్రీన్ హౌస్ ఎఫెక్ట్ అని కూడా అంటారు.

గ్లోబల్ ఎన్విరాన్మెంట్ నష్టం చాలా పెద్ద ప్రాంతంలో పర్యావరణ నాణ్యతను ప్రభావితం చేస్తుంది మరియు నష్టం ప్రారంభించబడిన ప్రాంతానికి స్థానికీకరించబడదు. గ్లోబల్ వార్మింగ్ వలన అనేక దుష్పుభావాలు వున్నాయి. ఇది హిమానీనదాలు కరగడం, ద్రువ ప్రాంతాలలోని మంచు కరగడం, సముద్ర నీటిమట్టం పెరగడం, తీర మైదానాలలో వరదలు రావడం మొదలైన అనేక రకాల ప్రభావాలను కలిగిస్తుంది.

32.1 (పశ్నలు

పర్యాపరణాన్ని నిర్వచించండి.
 పర్యాపరణం యొక్క రెండు భాగాలు ఏమిటి?
 మూడు బయోటిక్ భాగాలను తెలపండి ?
 మూడు బయోటిక్ భాగాలను తెలపండి ?
 నీటిని కలుషితం చేసే రెండు సాధారణ విషలోహాల పేర్లు చెప్పండి?
 5. CFCలు ఓజోస్ పొరను ఎలా ప్రభావితం చేస్తాయి?
 6. పర్యాపరణంలోని వివిధ విభాగాలు ఏమిటి?
 7. గ్రీస్హౌస్ ప్రభావాన్ని నిర్వచించండి?

3

32.4 పర్యావరణ కాలుష్యం

జనాభా పెరుగుదల కారణంగా ప్రజలు తమ ప్రాంతాలకు వెళ్లవలసి వచ్చింది. వారు గృహాలను నిర్మించడానికి చెట్లు మరియు నేల (మట్టి) వంటి సహజ వనరులను ఉపయోగించడం ప్రారంభించారు. వారి నివాసస్థలంలో మరిన్ని వ్యర్థ పదార్ధాలు సేకరించడం ప్రారంభించారు. వ్యర్థాలను పారవేయడానికి మానవులే పరిస్థితులను సృష్టించారు. మానవులు తమ స్వంత సౌకర్యాల కోసం వస్తువులను తయారు చేయడానికి పరిశ్రమలను ప్రారంభించారు. పెరుగుతున్న జనాభా డిమాండ్కు అనుగుణంగా ఎక్కువ ఆహారాన్ని పండించడానికి, పురుగుమందులు మరియు రసాయన ఎరువులు తయారు చేయబడ్డాయి. పరిశ్రములు వ్యర్థాలను కూడా ఉత్పత్తి చేస్తాయి. (క్రిమిసంహారకాలు మరియు రసాయనాలు సహజనీటివనరులైన నదులు, సరస్సులు మరియు చెరువులలోకి చేరి జలచరాలను ప్రభావితం చేశాయి. మానవ కార్యకలాపాలు పర్యావరణానికి హాని కలిగించే పరిస్థితిని కాలుష్యం అంటారు.

కాలుష్యం అనేది అవాంఛిత పదార్థాల ఉనికి కారణంగా సహజ వనరులైన గాలి, నీరు మరియు నేల క్షీణించడాన్ని సూచిస్తుంది.

కాలుష్యం(Contamination):

కలుషితాలు గాలి, నీరు, నేలలోని అవాంఛనీయ పదార్థాల ఉనికిని సూచిస్తాయి. ఉదాహరణకు, ఆటోమొబైల్స్ నుండి వెలువడే వాయువులు వాయు కాలుష్యానికి కారణమవుతున్నాయి. వాటి గాధత హానికరమైన ప్రభావాన్ని కలిగించే స్తాయిని మించి ఉంటే అది కాలుష్య కారకంగా మారుతుంది.

32.4 కాలుష్య కారకాలు

కాలుష్య కారకాలు ఘన, సెమీ సాలిడ్, లిక్విడ్, గ్యాస్ లేదా సబ్ మాలిక్యులర్ పార్టికల్ రూపంలో ఉండే పదార్థాలు, ఇవి పర్యావరణంలోకి గణనీయమైన మొత్తంలో (పవేశపెట్టినప్పుడు పర్యావరణంపై హానికరమైన (చెడు) (పభావాన్ని కలిగిస్తాయి.

కాలుష్య కారకాలను క్రింది మార్గాల్లో వర్గీకరించవచ్చు (Fig.32.1)

32.1 కాలుష్య కారకాల వర్గీకరణ

32.4.1 సహజ కాలుష్య కారకాలు

కాలుష్యానికి కారణమయ్యే అనేక సహజ కారకాలు ఉండవచ్చు. కొన్ని ఉదాహరణలు

- (i) చెట్లపై పిడుగులు పడినప్పుడు అడవుల్లో మంటలు ఏర్పడి వాతావరణంలోకి CO₂ చాలా ఎక్కువగా విడుదల అవుతుంది.
- (ii) నేల కోత వలన గాలిలో ధూళిని పెంచుతుంది. వర్షం లేదా సహజ జలపాతాల వల్ల ఇవి నీటి వనరులలోకి కూడా ప్రవేశించవచ్చు.
- (iii) అగ్నిపర్వత విస్ఫోటనాలు పర్యావరణానికి SO₂ మరియు ఘన కణాల వంటి కాలుష్య కారకాలను కూడా జోడిస్తాయి.
- (iv) ఆకులు, చెట్లు మరియు చనిపోయిన జంతువుల నుండి అస్థిర కర్బన సమ్మేళనాలు సహజంగా ప్రవేశిస్తాయి వాతావరణం.
- (v) సహజ రేడియోధార్మికత మరియు ఇతర సహజ కాలుష్య కారకాలు యుగాల నుండి పర్యావరణంలోకి ప్రవేశిస్తున్నాయి. (కానీ తక్కువ స్థాయి కాలుష్యం జీవుల జీవితాలను చాలా అరుదుగా ప్రమాదంలో పడేస్తుంది).

2.4.2 అంత్రోపోజెనిక్ కాలుష్య కారకాలు:

మానవ కార్యకలాపాల ద్వారా పర్యావరణానికి జోడించబడే కాలుష్య కారకాలను మానవజన్య కాలుష్య కారకాలు అంటారు. ఇవి రెండు రకాలు.

- (i) ప్రాథమిక కాలుష్య కారకాలు: ప్రాథమిక కాలుష్య కారకాలు నేరుగా వాతావరణానికి హానికరమైన రూపంలో జోడించబడతాయి. ఉదా CO₂ మరియు CO శిలాజ ఇంధనాన్ని కాల్చడం; వాహన దహనం, థర్మల్ పవర్ స్టేషన్లు మొదలైన వాటి నుండి SO₂ మరియు నైట్రోజన్ ఆక్షైడ్లు.
- (ii) ద్వితీయ కాలుష్య కారకాలు: ద్వితీయ కాలుష్య కారకాలు ప్రాథమిక కాలుష్య కారకాలు మరియు సాధారణ పర్యావరణ భాగాల మధ్య ప్రతిచర్య యొక్క ఉత్పత్తులు. అందువలన, SO₂ ఒక ప్రాథమిక కాలుష్య కారకం, ఇది SO₃ని అందించడానికి గాలిలోని ఆక్సిజన్తో చర్య జరుపుతుంది. ఇంకా, SO₃ వాతావరణంలో ఉన్న నీటిఆవిరితో చర్య జరిపి H₂SO₄ని ఏర్పరుస్తుంది. SO₃ మరియు H₂SO₄ ద్వితీయ కాలుష్య కారకాలు. నైట్రిక్ ఆక్ష్రెడ్ (NO), ఒక ప్రాథమిక కాలుష్య కారకం ఆక్సిజన్తో చర్య జరిపి

intext ప్రశ్నలు:

- 1. కాలుష్యకారకాన్ని నిర్వచించండి.
-
- 2. సహజ కాలుష్య కారకాల యొక్క రెండు మూలాలను పేర్కొనండి.
-
- 3. ద్వితీయ కాలుష్యాన్ని నిర్వచించండి.

.....

4. పర్యావరణ కాలుష్యం అంటే ఏమిటి?

.....

32.5 కాలుష్య కారకాల మూలాలు:

మన పర్యావరణంలోని అనేక కాలుష్య కారకాలు సహజ మరియు మానవ సంబంధిత మూలాలను కలిగి ఉంటాయి. ఉదాహరణకు, అగ్నిపర్వత విస్ఫోటనాలనుంచి సల్ఫర్ డై ఆక్ష్రెడ్ గాలిలో కలుస్తున్నది. నీటి ప్రవాహం ద్వారా కరిగిన ఖనిజాలు నదులు మరియు సముద్రాలలో కలుస్తున్నాయి.

కాలుష్య కారకాలు కూడా వర్గీకరించబడ్డాయి:

(i) స్టేషనరీ (స్థిర) మరియు (ii) మొబైల్ (చర) మూలాలు

స్థిరమైన మూలాలు: స్థిరమైన (పదేశం లేదా బాగా నిర్వచించబడిన (ప్రాంతం నుండి విడుదలయ్యే కాలుష్య కారకాలను స్థిర మూలం అంటారు. ఉదా: పవర్ ప్లాంట్లు, స్మెల్టర్లు, ఉపరితల గనులు మొదలైన వాటి పొగ గొట్టాలు. మొబైల్ మూలాలు: వ్యాపించిన మూలాల నుండి విడుదలయ్యే కాలుష్య కారకాలు లేదా ఒక (పదేశం నుండి మరొక (పదేశానికి మారే మూలాలను మొబైల్ (చర) మూలం అంటారు. ఉదా: ఆటోమొబైల్స్, బస్సులు, విమానాలు, ఓడలు,

రైళ్లు మొదలైనవి.

ప్రధాన కాలుష్య కారకాలు	మూలాలు	స్రభావాలు	
SO ₂	వాహనాలు, ఆమ్లవర్నం,	కళ్లకు చికాకు, చెట్ల ఆకులు	
	శిలాజ ఇంధన దహనం.	రాలిపోవడం.	
CO మరియు CO ₂	వాహనం దహనం మరియు	భూగోళం వేడెక్కి గ్రీన్ హౌస్	
	దహనం యొక్క ఇంధనాలు	ఎఫెక్ట్ కు కారణం అవుతుంది.	
	మరియు హైద్రోకార్బన్లు		
పొగ, బూడిద ఫ్లై	థర్మల్ శక్తి స్టేషన్లు	శ్వాసకోశ వ్యాధులు	
మరియు మసి			
దారి మరియు పాదరసం	నుండి ఆటో ఎగ్జాస్ట్	నాడీవ్యవస్థ మరియు రక్త ప్రసరణ	
	గ్యాసోలిన్, రంగులు, నిల్ప	వ్యవస్థ దెబ్బతింటాయి	
	బ్యాటరీలు, శిలాజ ఇంధన		
	దహనం		
CFC පා	శీతలీకరణలు మరియు	కిద్నీ నష్టం మరియు ఓజోన్	
	పరోసోల్	క్షీణత.	

పట్టిక నం. 32.1: ప్రధాన గాలి కాలుష్య కారకాలు వాటి మూలాలు మరియు ప్రభావాలు

పట్టిక నెం.32.2: ప్రధాన నీటి కాలుష్య కారకాలు వాటి మూలాలు మరియు ప్రభావాలు

Major Pollutantsof water	Some of the Sources	Some of the Effects
పురుగుమందులు మరియు	వ్యవసాయంలో సరిగా	చేపలు, వేటాడే పక్షులు
డిడిటి, బిహెచ్ సి వంటి	ఉపయోగించకపోవడం, దోమల	మరియు క్షీరదాలకు
కిమిసంహారక మందులు	నివారణలు	విషపూరితం.
పాస్టిక్	గృహాలు మరియు పరిశ్రమలు	చేపలు మరియు ఆవుల
		వంటి జంతువులను
		చంపుతుంది

క్లోరిస్ సమ్మేళనాలు	క్లోరిస్, పేపర్ మరియు	ప్లాంక్టన్ (పరిశ్రమల నీటి	
	బ్లీచింగ్ పౌడర్తో నీటి	ఉపరితలంపై తేలియాడే	
	క్రిమిసంహారక	జీవులు) దుర్వాసనకు	
		ప్రాణాంతకం మరియు	
		వాసన, మానవులలో	
		క్యాన్సర్కు	
		కారణమవుతుంది.	
లెద్	లెడ్ గ్యాసోలిన్, పెయింట్లు	జీవులకు విషపూరితం	
	మొదలైనవి		
పాదరసం	సహజ బాష్పీభవనం మరియు	మానవులకు అత్యంత	
	కరిగిన పారిశ్రామిక వ్యర్థాలు,	విషపూరితం	
	శిలీంద్రనాశకాలు		
ఆమ్లాలు	గని (డైనేజీ, పారి(శామిక వ్యర్థాలు	జీవులను చంపేస్తుంది.	
అవక్షేపాలు	సహజ కోత, ఎరువులు మరియు	నీరు ఆక్సిజన్ను గ్రహించే	
	ఇతర కర్మాగారాల నుండి ప్రవాహం,	సామర్థ్యాన్ని తగ్గిస్తుంది	
	మైనింగ్ మరియు నిర్మాణ		
	కార్యకలాపాలు		

కాలుష్య కారకాల యొక్క సాధారణ ప్రభావాలు వాటి మధ్య కాలుష్య కారకాల పరస్పర చర్యల వల్ల ఉత్పత్తి అవుతాయి.

32.3 పార్యాంశ ప్రశ్నలు

1. మానవులపై ${
m SO}_2$ మరియు CO యొక్క ఒక్కో చెడు ప్రభావాన్ని పేర్కొనండి.

.....

2. ప్రతి కాలుష్య సీసం మరియు CFC యొక్క ఒక మూలాన్ని పేర్కొనండి.

3. పర్యావరణంలో కాలుష్య కారకాలకు ఆంత్రోపోజెనిక్ మూలాల యొక్క రెండు ప్రధాన వనరులను పేర్కొనండి.

.....

4. నిశ్చల కాలుష్య వనరులకు రెండు ఉదాహరణలు ఇవ్వండి.

.....

మీరు ఏమి నేర్చుకున్నారు

- మనం నివసించే పరిసరాలు మన పర్యావరణం.
- పర్యావరణంలో రెందు భాగాలు ఉన్నాయి: భౌతిక లేదా జీవ మరియు జీవులు లేదా జీవసంబంధమైనవి
- కాలుష్య కారకాలను సహజ పరిసరాలకు జోడించిన పదార్థాలుగా నిర్వచించవచ్చు.
- కాలుష్య కారకాలకు రెండు ప్రధాన వనరులు ఉన్నాయి–స్థిర మరియు మొబైల్.
- కాలుష్య కారకాలు పర్యావరణం మరియు జీవులపై ప్రతికూల ప్రభావాలను కలిగి ఉంటాయి.
- SO₂, CO, CO, పొగ, Pb, Hg, CFC మొదలైనవి గాలిని కలుషితం చేస్తాయి. వాటి మూలాలు మరియు ప్రభావాలు వైవిధ్యంగా ఉంటాయి.
- జీవులకు మరియు జీవేతర వస్తువులకు అనారోగ్యకరమైన మరియు హానికరమైన స్థితిలో సాధారణ పదాలలో కాలుష్యం.
- పురుగుమందులు, ప్లాస్టిక్, డిటర్జెంట్లు, క్లోరిస్, పాదరసం మొదలైనవి నీటిని కలుషితం చేస్తాయి మరియు జలచరాల జీవితానికి ప్రమాదం.

టెర్మినల్ ప్రశ్నలు

- 1. పర్యావరణం అంటే ఏమిటి?
- 2. మానవజన్య కాలుష్య కారకాలు అనే పదాన్ని వివరించండి.
- 3. నాలుగు ప్రధాన నీటి కాలుష్య కారకాలు, వాటి మూలాలు మరియు ప్రభావాలను వ్రాయండి.
- 4. ప్రాథమిక మరియు ద్వితీయ కాలుష్య కారకాల మధ్య తేదాను గుర్తించండి.
- 5. కాలుష్యం యొక్క రెండు మూలాలు ఏమిటి? వివరించండి?

intext ప్రశ్నలకు సమాధానాలు

32.1

- 1. ఉమ్మడి రూపంలో ఉండే గాలి, నీరు, భూమి మరియు జీవరాశులను పర్యావరణం అంటారు.
- 2. పర్యావరణంలో బయోటిక్ మరియు అబియోటిక్ అనే రెండు భాగాలు ఉన్నాయి.
- 3. మొక్కలు, జంతువులు, సూక్ష్మజీవులు మొదలైన జీవులు.
- 4. సీసం మరియు మెర్యురీ.
- 5. ఓజోన్ పొరలో రంద్రాలను కలిగిస్తుంది.
- 6. వాతావరణం, జీవావరణం, హైద్రోస్పియర్ మరియు లిథోస్పియర్.

32.2

1. CO, CO2, SO2 పంటి అధిక సాంద్రతలో ఉన్న ఏదైనా పదార్ధం.

2. అగ్నిపర్వత విస్పోటనాలు మరియు ఉపరితల గనుల నుండి రన్–ఆఫ్.

3. ద్వితీయ కాలుష్య కారకాలు ప్రాథమిక కాలుష్య కారకం మరియు సాధారణ పర్యావరణ భాగాల మధ్య ప్రతిచర్య యొక్క ఉత్పత్తులు.

4. పర్యావరణ కాలుష్యం అనేది అవాంఛనీయమైన ఏకాగ్రతలో అవాంఛిత పదార్ధాల చర్య లేదా ఉనికి కారణంగా గాలి, నీరు మరియు నేల వంటి సహజ వనరుల నాణ్యతలో క్షీణత లేదా అపరిశుభమైన అభ్యంతరకర పరిస్థితులు.

32.3

1. SO $_2$ ద్వారా కళ్ళకు చికాకు మరియు శ్వాస తీసుకోవడంలో ఇబ్బంది.

2. గ్యాసోలిన్ (పెట్రోల్)తో నడిచే ఆటోమొబైల్స్ ఎగ్జాస్ట్ నుండి లెడ్ (సీసం). శీతలకరణి నుండి CFC. పారిశ్రామిక వ్యర్థాలు మరియు ఆటోమొబైల్ ఎగ్జాస్ట్.

4. పవర్ ప్లాంట్ల స్మోక్ స్టాక్స్, ఉపరితల గనుల నుండి రన్–ఆఫ్.

33. A గాలి కాలుష్యం

జీవులు వాటి తక్షణ పర్యావరణంతో సన్నిహిత సంబంధాన్ని కలిగి ఉంటాయి. శ్వాసక్రియ సమయంలో గాలి నుండి ఆక్సిజన్ తీసుకోబడుతుంది మరియు చాలా జీవుల ద్వారా వాతావరణంలోకి కార్బన్ డయాక్ష్రెడ్ విడుదల అవుతుంది. CO₂ ఆహారాన్ని తయారు చేయడానికి మొక్కలు తీసుకుంటాయి. వివిధ జీవులు మరియు ప్రకృతి మధ్య ఈ సామరస్య సంబంధానికి మానవ కార్యకలాపాల వల్ల భంగం కలిగింది. తీవ్రమైన వ్యవసాయం, పారిశ్రామికీకరణ, పట్టణీకరణ మన భౌతిక వనరులను దిగజార్చాయి మరియు ఫలితంగా చమురు, నీరు మరియు వాతావరణం అత్యంత కలుషితమయ్యాయి.

ఈ పాఠంలో మనం వాతావరణాన్ని నిర్వచించి, దానిలోని భాగాలను ప్రస్తావిస్తాము, వాతావరణ కాలుష్య కారకాల వల్ల వృక్ష మరియు జంతు జీవులకు వాయు కాలుష్యం మరియు నష్టం యొక్క మూలాలను చర్చిస్తాము. మేము మరింత వాతావరణ కాలుష్యాన్ని ఆపగల చర్యలను కూడా వివరిస్తాము.

లక్ష్యాలు

ఈ పాఠాన్ని చదివిన తర్వాత మీరు వీటిని చేయగలరు:

- గాలి కూర్పును వివరించడం
- వాయు కాలుష్యాన్ని వివరించడం
- శ్వాసక్రియ, కిరణజన్య సంయోగక్రియ మరియు క్షయం చక్రాన్ని వివరించడం
- ప్రధాన వాయు కాలుష్య కారకాల ఉదాహరణలను వివరించడం
- ప్రధాన వాయు కాలుష్య మూలాల వివరించడం
- శిలాజ ఇంధనాన్ని కాల్చడం ద్వారా కార్బన్ చక్రం మరియు ఆక్సిజన్ క్షీణత మధ్య సంబంధాన్ని గుర్తించడంబీ
- నత్రజని చక్రాన్ని వివరించడం
- గ్రీన్ హౌస్ ప్రభావాన్ని వివరించడం
- గ్రీస్ హౌస్ ప్రభావం కలిగించే కారకాలను వివరించడం
- భూతాపాన్ని వివరించడం
- ఓజోన్ పొరను వివరించడం
- ఓజోన్ పొర క్షీణతను వివరించడం
- యాసిడ్ నిక్షేపణ/యాసిడ్ వర్నాన్ని వివరించడం
- హిమోగ్లోబిన్ మరియు కార్బన్ మోనాక్సైడ్ యొక్క దుష్ప్రభావాలను వివరించడం.

33.1 గాలి యొక్క కూర్పు

వాతావరణం భూమి చుట్టూ ఉండే పలుచని గాలి పొర. మనం ఉపరితలం నుండి పైకి వెళ్ళేటప్పుడు గాలి సన్నగా (తక్కువ సాంద్రత) అవుతుంది. భూమి యొక్క ఉపరితలం నుండి 50 కిలోమీటర్ల దూరంలో చాలా గాలి

ස්රූ ස්රසාර්ධ.

వాతావరణం ఐదు విభిన్న మండలాలను కలిగి ఉంది, అవి:

- 1. ట్రోపోస్పియర్: అన్ని వాతావరణ సంఘటనలు జరిగే జోన్.
- స్టాటో ఆవరణ: ఈ జోన్ నీటి ఆవిరి మరియు ఓజోన్ మరియు ఉష్ణోగతను కలిగి ఉంటుంది
- 3. మెసోస్పియర్: ఈ జోన్ దట్టమైన వాయువులను కలిగి ఉంటుంది మరియు ఓజోన్ యొక్క తక్కువ సాంద్రతలు ఉంటాయి మరియు భూమిని సమీపించే ఈ పొరలో ఉల్కలు నాశనం అవుతాయి.
- థర్మోస్పియర్: వాయువులు ఎక్కువగా అయనీకరణం చేయబడిన రూపంలో ఉండే జోన్ మరియు ఇక్కడ UV మరియు X-కిరణాలు శోషించబడతాయి.
- 5. ఎక్సోస్పియర్: ఉపగ్రహ కక్ష్మలను కరిగి ఉన్న భూమి యొక్క ఈ బయటి జోన్

Figure 33.1: వాతావరణం యొక్క మండలాలు

శుభమైన, పొడి మరియు కాలుష్యం లేని గాలి యొక్క కూర్పు దాదాపు స్థిరంగా ఉంటుంది. ప్రకృతిలో కార్బన్ చక్రం, నైటోజన్ చక్రం మొదలైన వివిధ సహజ చక్రాల కారణంగా గాలి యొక్క కూర్పు స్థిరంగా ఉంటుంది. చక్రాలలో ఏదైనా ఆటంకం జీవులపై హానికరమైన ప్రభావాన్ని చూపుతుంది. సహజ వాతావరణ గాలి వాయు మరియు వాయురహిత భాగాలతో రూపొందించబడింది.

(a) వాయువు: గాలి పరిమాణంలో 98% పైగా నైట్రోజన్ మరియు ఆక్సిజన్ అలంకరణ. ఇతర వాయువులు

CO₂, నీటి ఆవిరి మరియు ఆర్గాన్, నియాన్, క్రిప్టాన్, హీలియం, జినాన్, రాదాన్ మరియు ఓజోన్ వంటి జద వాయువులు జాడలలో ఉన్నాయి. ఈ వాయువులు వాతావరణంలో వాటి లభ్యమయ్యే సాంద్రతల ఆధారంగా విస్త్రతంగా ప్రధానమైనవి, చిన్నవి మరియు జాడలుగా వర్గీకరించబడ్డాయి (టేబుల్ 33.1)

(బి) వాయురహితం: పొగ, దుమ్ము మరియు ఉప్పు (సముద్రం నుండి బాష్పీభవనం ద్వారా) గాలిలో వాయురహిత భాగాలు.

Categories Gas Formula **Percent ByVolume** 78.9 Major Nitrogen Ν, 20.94 Oxygen O_2 Water vapour H,O 0.1to5 Minor Carbondioxide CO, 0.035 He 0.00052 Trace Helium Methane CH₄ 0.00015 Hydrogen Η, 0.00005 SO, Sulphurdioxide 0.000002 Ammonia NH, 0.00001 CO 0.00001 Carbon NO, 0.00001 Nitrogen Trace Ozone 0,

Table 33.1 Composition of Atmosphere

33.2 కార్బస్ బదిలీ మార్గాలు - శ్వాసక్రియ, కిరణజన్య సంయోగక్రియ మరియు క్షయ చక్రం:

వివిధ భాగాల మధ్య సున్నితమైన సమతుల్యత ఉంది. కాలుష్యం కారణంగా సమ్మేళనాల ఏకాగ్రతలో ఏదైనా భంగం ఏర్పడితే అది జీవులపై ప్రతికూల ప్రభావం చూపుతుంది.

ఉదాహరణకు, అకర్బన కార్బన్ దయాక్ష్మెడ్ మరియు జీవులు తయారు చేయబడిన వివిధ రకాల కర్బన సమ్మేళనాల మధ్య కార్బన్ చురుకుగా చక్రం తిప్పబడుతుంది. ఇది ఆటోట్రోఫ్స్ (ఆటో = సెల్ఫ్ = ట్రోఫోస్ = ఫీడ్) యొక్క కార్యాచరణ ద్వారా అకర్బన నుండి సేంద్రీయ రూపానికి కదులుతుంది. మొక్కలు కిరణజన్య సంయోగక్రియ ద్వారా ఆహారాన్ని సంశ్లేషణ చేస్తాయి మరియు ఆహార గొలుసులో "ఉత్పత్తిదారులు (Producers)" పర్యావరణంలోకి కార్బన్ దయాక్పైడ్ విడుదల చేసే ప్రక్రియను శ్వాసక్రియ అంటారు. మరొక కార్బన్ బదిలీ మార్గం సూక్ష్మజీవుల ద్వారా ఏర్పడిన సేంద్రియ పదార్థం యొక్క క్షయం మరియు కుళ్ళిపోవడం.

13

ఆకుపచ్చ మొక్కలు వాతావరణం నుండి CO₂ మరియు నేల నుండి నీటిని తీసుకుంటాయి. ఆకుపచ్చ మొక్కల అకులు ఆకుపచ్చ వర్ణద్రవ్యం క్లోరోఫిల్ కలిగి ఉంటాయి – కిరణజన్య సంయోగ వర్ణద్రవ్యం. సూర్యకాంతి నుండి సౌర శక్తిని ట్రాప్ చేస్తుంది. కాంతి మరియు వర్ణదవ్యం సంకర్షణ చెందుతాయి మరియు అనేక దశల ద్వారా, స్టార్చ్ మొక్కల ద్వారా సంశ్లేషణ చేయబడుతుంది మరియు ఆక్సిజన్ విడుదల చేయబడుతుంది. ఆక్సిజన్ వాతావరణంలోకి కదులుతుంది (Fig. 33.2). నిజానికి భూమిపై జీవరాశులు పరిణామం చెందిన తర్వాత మొదటి రెండు బిలియన్ సంవత్సరాలలో అక్సిజన్ లేదు. వాతావరణంలోని ఆక్సిజన్ కిరణజన్య సంయోగ జీవుల (ఉదా. మొక్కలు) నుండి వచ్చింది. జీవుల మనుగడకు అవసరమైన విలువైన ఆక్సిజన్ను భూమికి సరఫరా చేయడంలో మొక్కలు కీలక పాత్ర పోషిస్తాయి.

33.2.2: శ్వాసక్రియ

శ్వాసక్రియ అనేది జీవులు మరియు వాతావరణం మధ్య వాయువుల మార్పిడి ప్రక్రియ. వాతావరణం ఆక్సిజన్ యొక్క రిజర్వాయర్ మరియు జీవులు ఆహారం యొక్క ఆక్సీకరణ కోసం ఈ ఆక్సిజన్ను తీసుకుంటాయి. ఆహారం యొక్క ఆక్సీకరణ శక్తిని విడుదల చేస్తుంది. జీవి యొక్క కణంలోకి ఆక్సిజన్ చేరినప్పుడు, ఎంజైమ్ ఉత్ర్మేరక ప్రతిచర్యలు జరుగుతాయి, దీనిలో గ్లూకోజ్ యొక్క రసాయన బంధాలు విచ్ఛిన్నమవుతాయి, ATP (అడెనోసిన్ టైఫాస్ఫేట్) రూపంలో శక్తి విడుదల చేయబడుతుంది మరియు కార్బన్ డయాక్ష్పెడ్ విడుదల అవుతుంది. కార్బన్ డయాక్ఫైడ్ వాతావరణంలోకి తిరిగి వెళుతుంది. (Fig. 33.2) కాబట్టి జీవుల శ్వాసకోశ కార్యకలాపాల ద్వారా గణనీయమైన మొత్తంలో కార్బన్ దయాక్షైడ్ వాతావరణంలోకి తిరిగి వస్తుంది.

Fig: 33.3: Cellular Respiration

Fig. 33.3 సెల్యులార్ శ్వాసక్రియను చూపుతుంది, దీనిలో ఆక్సిజన్ గ్లోకోజు రసాయన ప్రతిచర్యల (శేణి మరియు ఎలక్ర్టాన్ రవాణా గొలుసు ద్వారా ఆక్సీకరణం చేస్తుంది. ATP యొక్క అనేక అణువుల రూపంలో శక్తి విడుదల అవుతుంది. CO₂ బయటకు ఇవ్వబడుతుంది మరియు వాతావరణంలోకి వెళుతుంది. కొన్ని ATP అణువులు కూడా ప్రక్రియలో ఉపయోగించబడతాయి మరియు ADP (అడెనోసిన్ డైఫాస్పేట్ మరియు పై (అకర్బన ఫాస్ఫేట్)గా విడిపోతాయి.

33.2.3 సేంద్రీయ పదార్థం యొక్క క్షయం (Decay of Organic matter)

బ్యాక్టీరియా మరియు శిలీంధ్రాలు వంటి సూక్ష్మజీవులు జీవుల మరణం తర్వాత మిగిలిపోయిన సేంద్రియ పదార్ధం యొక్క క్షయం మరియు కుళ్ళిపోవడాన్ని తీసుకువస్తాయి. (సూక్ష్మజీవుల ద్వారా) పాక్షికంగా జీర్ణమయ్యే సేంద్రీయ పదార్థం మరియు చనిపోయిన జీవుల కుళ్ళిపోవడం వల్ల, CO విముక్తి పొంది వాతావరణంలోకి విడుదల చేయబడుతుంది. అందువలన క్షయం చక్రం కూడా వాతావరణంలో CO₂ జతచేస్తుంది. చిత్తడి నేలలు, వరి (వరి) పొలాలు మరియు చిత్తడి నేలలలో, అనాక్సిక్ (అక్సిజన్ లేకపోవడం) పరిస్థితులు ఉన్నాయి. మెథనోజెనిక్ బ్యాక్టీరియా ఈ ప్రాంతాల్లో తక్కువ మాలిక్యులర్ బరువు కొవ్వు ఆమ్లాలను మీథేన్గా మారుస్తుంది. 33.3 ప్రకృతిలో కార్బన్ చక్రం (Carbon Cycle in Nature)

కార్బన్ చక్రం అత్యంత ముఖ్యమైన బయోజెకెమికల్ వాయు చక్రం. అలాగే, కార్బన్ తొలగించబడినంత వేగంగా పర్యావరణానికి తిరిగి వస్తుంది. కార్బన్ యొక్క ధనిక మూలం సముద్రం, ఇక్కడ కార్బన్ కార్బోనేట్ మరియు బైకార్బోనేట్ అయాన్లుగా ఉంటుంది. కార్బన్ ప్రధానంగా CO₂ రూపంలో ఏరోబిక్ శ్వాసక్రియ యొక్క ఉత్పత్తిగా వాతావరణంలోకి ప్రవేశిస్తుంది. అగ్నిపర్వత విస్ఫోటనాలు భూమి యొక్క క్రస్ట్రేలో లోతైన రాళ్ల నుండి కార్బన్ను కూడా విడుదల చేస్తాయి. కిరణజన్య సంయోగక్రియ కోసం మొక్కలు CO₂ని తీసుకుంటాయి, ఈ సమయంలో అవి CO తగ్గించడానికి కాంతి శక్తిని ఉపయోగిస్తాయి. కాబట్టి మొక్కలను ఫోటోఆటోటోఫు అంటారు (ఫోటో అంటే కాంతి). కార్బన్ డయాక్రైడ్ను మీథేన్గా తగ్గించడానికి రసాయన బంధాలలో నిల్వ చేయబడిన శక్తిని ఉపయోగించే కొన్ని బ్యాక్టీరియా వంటి ఇతర జీవులు ఉన్నాయి. వాటిని కెమోఆటోటోఫ్ట్లు అంటారు. అయితే కిరణజన్య సంయోగక్రియ అనేది అకర్బన కార్బన్ను ఆర్గానిక్గా మార్చే అతి ముఖ్యమైన పుక్రిలియి. ఉత్పత్తిదారులు మరియు వినియోగదారులు చనిపోయినప్పుడు, డీకంపోజర్లు ఈ చనిపోయిన జీవుల యొక్క సేంద్రీయ పదార్ధాన్ని తగ్గిస్తాయి మరియు కార్బన్ మట్టిలోకి కదులుతుంది. ఉత్పత్తిదారులు (Producers), వినియోగదారులు (Cunsumers) మరియు డీకంపోజర్లు (Decomposers) శ్వాసక్రితిల్ నిర్వహించబడుతుంది. (Fig.33.4) చెట్లు క్రీటిరిచినప్పుడు, అవి శిలాజ ఇంధనాలుగా మారతాయి మరియు మట్టిలో లోతుగా పాతిపెట్టబడతాయి.

Fig.33.4: The Carbon Cycle in Nature

33.4 నత్రజని చక్రం

జీవావరణంలో జీవ ప్రక్రియల నిర్వహణకు నైటోజన్ మరియు దాని సమ్మేళనాలు అవసరం. ఉదాహరణకు, అమైనో ఆమ్లాలు, పెప్టైద్లు మరియు ప్రోటీన్లు లేకుండా జీవులు ఉండవు.

నత్రజని అత్యంత సమృద్ధిగా ఉండే వాయువు (వాతావరణంలో దాదాపు 78%), అయినప్పటికీ, మొక్కలు ఉ చిత నత్రజనిని (N₂) నేరుగా ఉపయోగించలేవు. మొక్కలు, ఆల్గే మరియు బ్యాక్టీరియా పర్యావరణం నుండి నైటేట్ అయాన్ (NO₃) లేదా అమ్మోనియం NH4⁺ వంటి అకర్బన నత్రజనిని తీసుకుంటాయి మరియు వాటిని తమసొంత ట్రోటీన్ అణువులను నిర్మించదానికి ఉపయోగిస్తాయి. అంటే సేంద్రీయ నత్రజని. సేంద్రీయ నత్రజనిని జంతువులు మరియు మానవులు తమ శరీరాలను నిర్మించడానికి వినియోగిస్తారు. నత్రజని సాపేక్షంగా జడ మూలకం మరియు ఉచిత నత్రజనిని (free Nitrogen) అందుబాటులో ఉన్న నత్రజని సమ్మేళనాలుగా మార్చే కొన్ని ప్రక్రియలు ఉన్నాయి. వాతావరణంలోని నైట్రోజన్ వాయువు, బ్యాక్టీరియా తీసుకోవడం ద్వారా నైట్రేట్లు లేదా అమ్మోనియాగా మార్చబడుతుంది. సహజ ప్రక్రియలో నత్రజని – ఫిక్సింగ్ బ్యాక్టీరియా (కొన్ని నీలం ఆకుపచ్చ బాక్టీరియా) నైట్రోజన్ను "పరిష్కరించే" అత్యంత ప్రత్యేక సామర్థ్యాన్ని కలిగి ఉంటుంది, అనగా అవి దానిని తక్కువ మొబైల్, మరింత ఉపయోగకరమైన రూపాలకు మార్చడం ద్వారా హైట్రోజన్తో కలిపి అమ్మోనియా (NH₃) తయారు చేస్తాయి. దీనినే నైట్రోజన్ ఫిక్సేషన్ అంటారు. ఈ రూపంలో నత్రజని మొక్కలు మరియు ఆల్గే ద్వారా ఉపయోగించబడుతుంది. అవి అకర్బన నైట్రోజన్ సమ్మేళనాలను సేంద్రీయ సమ్మేళనాలుగా మారుస్తాయి మరియు నత్రజని అందుబాటులోకి వస్తుంది. పర్యావరణ ఆహార గొలుసుల ద్వారా సేంద్రీయ నత్రజని మానవులు మరియు జంతువులతో సహా ఇతర జీవులలోకి పుప్తేనిస్తుంది. జీవులు నశించినప్పుడు, కొన్ని బ్యాక్టీరియా నత్రజని–కలిగిన కర్బన సమ్మేళనాలను తిరిగి నైట్రేట్లుగా, అమ్మోనియాగా మరియు చివరికి పరమాణు నత్రజని (గ్యాస్)గా మార్చగల సామర్థ్యాన్ని కలిగి ఉంటుంది. ఈ విధంగా పరమాణు నత్రజని వాతావరణంలోకి తిరిగి వస్తుంది. స్థిర నత్రజనిని మాలిక్యులర్ నైట్రోజన్కి తిరిగి విడుదల చేసే ప్రతియను డి–నైట్రిఫికేషన్ అంటారు. నుత్రజని చక్రం Fig. 33.5లో చూపబడింది.

Fig.33.5: The Nitrogen Cycle

పార్యాంశ ప్రశ్నలు (33.1-33.4)

1) వాతావరణంలో గరిష్ట పరిమాణంలో ఉండే వాయువు ఏది?

.....

2) గాలిలోని ఏవైనా రెండు ప్రధాన భాగాలను పేర్కొనండి?

.....

3) ఏ జీవులను ఆటోట్రోఫ్లు అంటారు మరియు ఎందుకు?

.....

4) శక్తి మరియు కార్బస్ డైఆక్పైడ్ను విడుదల చేయడానికి శ్వాసక్రియ సమయంలో విచ్చిన్నమయ్యే ఆహార పదార్థానికి

పేరు పెట్టండి?

5) మొక్కలలో ఉండే ఆకుపచ్చ కిరణజన్య వర్ణద్రవ్యం ఏది?
6) చనిపోయిన సేంద్రీయ పదార్థం నుండి కార్బన్ పర్యావరణంలోకి ఎలా వస్తుంది?
7) మానవులు ఉత్పత్తిదారులా లేక వినియోగదారులా?
8) ప్రకృతిలో కార్బన్ స్థిరంగా ఉండే రెండు భౌతిక దృగ్విషయాలను పేర్కొనండి?
9) ఓజోన్ ప్రధానంగా అందుబాటులో ఉండే వాతావరణ పొరకు పేరు పెట్టండి?

33.5 వాయు కాలుష్యం

నిర్వచనం: వాయు కాలుష్యం అనేది భౌతిక మరియు రసాయన పద్ధతులను ఉపయోగించి మానవ కార్యకలాపాల ద్వారా కాలుష్య కారకాలను (ప్రవేశపెట్టడం వల్ల వాతావరణంలో హానికరమైన మార్పులను సూచిస్తుంది. CO₂, O₂ మరియు N₂ సహజంగా వాతావరణంలో సమతుల్యం మరియు ఏదైనా అసమతుల్యత వలన (ప్రతికూల ప్రభావాలకు దారితీస్తుంది. SO₂, NO[×], CO మరియు CO₂ వంటి కాలుష్య కారకాలు లేదా కాలుష్య కారకాలు తీవ్రమైన వాయు కాలుష్యానికి కారణమయ్యే సాధారణ వాయు కలుషితాలు. స్థూలంగా, వాయు కాలుష్య కారకాల ద్వారా ఇలా వర్గీకరించబడ్డాయి:

1. నలుసు కాలుష్య కారకాలు 2. ద్రవ బిందువులు 3. వాయు కాలుష్య కారకాలు

33.5.1 నలుసు కాలుష్య కారకాలు

నలుసు కాలుష్య కారకాలు పొగ, ధూళి, పొగమంచు, పుప్పొడి, మసి, బూడిద, పొగలు, సీసం వంటి ఇతర దహన ఉపఉత్పత్తులు మరియు వ్యవసాయ రసాయనాలు కావచ్చు.

- పొగ: ఇది సేంద్రియ పదార్థాల దహనంపై ఏర్పడే వాయువులు మరియు కణాల సస్పెన్షన్. ఉదాహరణ పొగాకు, కలప, నూనె, శిలాజ ఇంధనాలను కాల్చినఫ్పుడు మరియు వంట చేసేటఫ్ఫుడు కూడా పొగ వస్తుంది. సేంద్రియ పదార్థాన్ని కాల్చడం వల్ల పొగ అనేది ఉప ఉత్పత్తి.
- ధూళి: 10 మైక్రాన్ల కంటే తక్కువ పరిమాణంలో ఉండే పర్టిక్యులేట్ పదార్థం దుమ్ము. ఇది ఊపిరితిత్తులకు చేరుకుంటుంది, శ్వాసకోశంలో చేరుతుంది మరియు ఆస్తమా లేదా ఊపిరితిత్తుల క్యాన్సర్కు కూడా

కారణమవుతుంది. స్టోన్ క్రషర్లు, సిమెంట్ ఉత్పత్తి మరియు ఇసుక కార్యకలాపాల నుండి ఉత్పన్నమయ్యే దుమ్ము నలుసు కాలుష్య కారకాలకు కొన్ని దృష్టాంతాలుగా ఉపయోగపడుతుంది.

- మసి మరియు బూడిద బూడిద: ఇంధనం మరియు బొగ్గ మండే పరిశ్రమల చిమ్నీల నుండి ఇవి ఉత్పన్నమవుతాయి.
 పై యాష్ అనేది తేలికైన పదార్థం, ఇది పరిశ్రమల ద్వారా విడుదలయ్యే వాయువుల వెంట ఎగురుతుంది.
 బొగ్గ యొక్క అసంపూర్ణ దహనం కారణంగా మసి నలుపు రంగులో ఉంటుంది. అవి గాలికి ఎగిరిపోయి గాలిలో కలిసిపోతాయి.
- పొగలు: సబ్లిమేషన్ సమయంలో, గాలిలో ఉండే కణాలు పొగలుగా ఉత్పత్తి అవుతాయి. స్వేదనం, ఉడకబెట్టడం వంటి రసాయన ప్రక్రియలు పొగలను కలిగిస్తాయి.
- పుప్పొడి: ఇవి పువ్వుల ద్వారా ఉత్పత్తి చేయబడతాయి మరియు ప్రకృతిలో పొడిగా ఉంటాయి. అవి గాలి ద్వారా దూరంగా ఉంటాయి మరియు గాలికి జోడించబడతాయి.
- వ్యవసాయ రసాయనాలు: రసాయనిక క్రిమిసంహారకాలు, కలుపు సంహారకాలు మరియు ఇతర పురుగుమందులు మొక్కలపై పిచికారీ చేసినప్పుడు పర్యావరణానికి కలుపుతారు. అధిక వినియోగం మొక్కలకు కారణం కావచ్చు.
 అవి జంతువులకు మరియు మానవులకు కూడా విషపూరితమైనవి.
- సీసం: పెయింట్, సిరామిక్ మరియు పురుగుమందుల పరిశ్రమలు, సీసం నిల్వ చేసే బ్యాటరీలు మరియు విస్మరించిన బ్యాటరీల రీస్పెక్లింగ్ వంటి పరిశ్రమల నుండి సీసం వాతావరణంలోకి జోడించబడటం వలన అత్యంత ప్రమాదకరమైన కాలుష్యకారకం. ఆటోమొబైల్స్ నుండి ఎగ్జాస్ట్ ద్వారా గాలిలో ప్రధాన భాగం జోడించబడుతుంది, ఇది బెట్రా ఇథైల్ లెడ్ (TEL) కలిగి ఉన్న ఆటోమొబైల్ గ్యాసోలిన్ యాంటీ–నాకింగ్ ఏజెంట్గా ఉపయోగించబడుతుంది. సీసం RBC (Red Blood Cells) ల అభివృద్ధికి ఆటంకం కలిగిస్తుంది మరియు రక్తహీనతకు కారణమవుతుంది. సీసం ఒక సంచిత విషం మరియు తక్కువ గాఢతలో కూడా ఎక్కువసేపు బహిర్గతం కావడం వల్ల మూత్రపిండాలు మరియు కాలేయం దెబ్బతింటాయి.

33.5.2 హైడోకార్బన్లు:

ద్రవ బిందువులు లేదా వాయువు రూపంలో ఉండే హైద్రోకార్బన్లు గాలిని కలుషితం చేస్తాయి. ద్రవ బిందువులుగా అవి చిందిన లేదా చమురు క్షేత్రాల సీపేజ్ మరియు సహజ వాయువు లీకేజీ ద్వారా జోడించబడతాయి. ఉదాహరణ: మీథేన్

మెథనోజెనిక్ బ్యాక్టీరియా ద్వారా మీథేన్ చిత్తడి నేలలు మరియు వరి పొలాలలో విడుదలవుతుంది. మీథేన్ (CH4) రూమినెంట్ జంతువుల కడుపులో కూడా ఉత్పత్తి అవుతుంది. ఇంధనాల అసంపూర్ణ దహనం ఊపిరితిత్తుల క్యాన్సర్కు కారణమయ్యే 3,4–బెంజో పైరీన్ను విడుదల చేస్తుంది. పురుగుమందులు, పెయింట్లు మరియు ద్రావకాలు కూడా హైడ్రోకార్బన్లను విడుదల చేస్తాయి. హైడ్రోకార్బన్లు ఫోటోకెమికల్ స్మోగ్ యొక్క మూలం.

33.5.3 వాయు కాలుష్య కారకాలు:

SO₂, CO₂, నైట్రోజన్ ఆక్ష్రెద్దు సాధారణంగా మానవ కార్యకలాపాల ద్వారా గాలికి జోడించబడతాయి. ఈ కణాల యొక్క అధిక ఉనికి రెండింటిపై తీవ్రమైన హానికరమైన ప్రభావాలకు దారితీస్తుంది.

భౌతిక వాతావరణం మరియు మానవ ఆరోగ్యం.

SO2 మరియు H2S: ఇవి ఖనిజాలను కరిగించడం, పెట్రోలియం శుద్ది చేయడం, శిలాజ ఇంధనాల దహనం, కాగితం తయారీ వంటి ప్రక్రియల ద్వారా వాతావరణంలోకి విడుదలవుతాయి. విస్పోటనాలు మరియు H2SO4 తయారీ. SO2 మరియు H2Sకి గురైన మొక్కలు (ఆకులు రాలడం) మరియు పెరుగుదలను తగ్గిస్తాయి. మానవులలో, SO2 కాలుష్యం తలనొప్పి, వాంతులు, కంటి మరియు శ్వాసకోశ భాగాల చికాకును కలిగిస్తుంది.

నైటోజన్ అక్రైద్ల: బాక్టీరియా ద్వారా నత్రజని సమ్మేళనాల యొక్క ఏరోబిక్ విచ్చిన్నం నైటోజన్ ఆక్రైద్ల యొక్క సహజ మూలం. శిలాజ ఇంధనాన్ని మండించడం కూడా వాటిని విడుదల చేస్తుంది. పవర్ జనరేటర్లు, ఆటోమొబైల్ ఎగ్జాస్ట్ర్లు, పేలుడు పదార్ధాలు మరియు నత్రజని ఎరువుల పరిశ్రమలు మరియు ఇతర మానవజన్య వనరులు నైటోజన్ ఆక్ష్రెడ్లను ఉత్పత్తి చేస్తాయి.

NOx: అకులు మరియు పంద్లు త్వరగా రాలిపోవడానికి కారణమవుతుంది. నైట్రోజన్ ఆక్ష్రెద్లు ఫోటోకెమికల్ స్మోగ్, యాసిడ్ డిపాజిషన్ మరియు (గీన్ హౌస్ ఎఫెక్ట్ యొక్క ఒక మూలం.

CO₂ మరియు CO: చమురు, గ్యాస్, బొగ్గ మరియు కలప దహనం వాతావరణంలో CO₂ విదుదల చేస్తుంది. CO ప్రధానంగా గ్యాసోలిన్ ఇంజిన్లు మరియు లోపభూయిష్ట కొలిమిలలో బొగ్గను కాల్చడం నుండి విడుదలవుతుంది. అంతర్గత దహన యండ్రాలు కలిగిన మోటారు వాహనాలు అధిక స్థాయిలో CO మరియు హైడ్రోకార్బన్లను విడుదల చేస్తాయి. అధిక CO₂ గ్లోబల్ వార్మింగ్కు కారణమవుతుంది, CO ఫోటోకెమికల్ స్మోగ్కు కారణమవుతుంది మరియు మానవులచే ప్రశంసించబడినప్పుడు ప్రాణాంతక ప్రభావాన్ని కలిగి ఉంటుంది.

CO విషప్రభావం: CO హిమోగ్లోబిన్ను అధిక అనుబంధాన్ని కలిగి ఉంటుంది. ఇది రక్త వర్ణదవ్యం హిమోగ్లోబిన్ తో కలిసి కార్బాక్సీ హిమోగ్లోబిన్ను ఏర్పరుస్తుంది. హిమోగ్లోబిన్ యొక్క సాధారణ విధి O₂ని తీసుకువెళ్లడం. కానీ CO₂ హిమోగ్లోబిన్తో O₂ కంటే దాదాపు రెండు వందల రెట్లు వేగంగా కలుస్తుంది. కణజాలాలకు ఆక్సిజన్ అందదు మరియు ఆక్సిజన్ లేకపోవడం వల్ల చనిపోతాయి. కార్బాక్సీ హిమోగ్లోబిన్ ముదురు ఎరుపు రంగులో ఉంటుంది, CO విషప్రభావం బాధితులు ముదురు ఎరుపు పెదవులు కలిగి ఉంటారు. తేలికపాటి CO విషం బ్రోన్హైటిస్ మరియు ఎంఫిసెమా వంటి ఊపిరితిత్తుల రుగ్మతలకు కారణమవుతుంది. సిగరెట్ పొగ నుండి వచ్చే CO ధూమపానం చేసేవారిలో హిమోగ్లోబిన్ పనిచేయకుండా చేస్తుంది.

భోటో కెమికల్ ఆక్సిడెంట్లు: నైట్రోజన్ ఆక్ష్రెద్దు మరియు హైద్రోకార్బన్లు వంటి ప్రాథమిక కాలుష్య కారకాలు వాతావరణంలో మిళితం అవుతాయి మరియు సూర్యుడి నుండి వచ్చే UV రేడియేషన్ ప్రభావంతో పెరాక్సీ ఎసిటైలైనైటేట్ (PAN) మరియు ఓజోన్ వంటి ద్వితీయ కాలుష్య కారకాలను ఏర్పరుస్తాయి. PAN మరియు O₃ రెందూ ఫోటోకెమికల్

20

స్మోగ్ను ఏర్పరుస్తాయి. PAN మరియు O3 మొక్కలకు విషపూరితం. మానవులలో ఇవి కళ్లలో దగ్గ, తలనొప్పి, పొడి గొంతు, శ్వాసకోశ సమస్యలు మరియు రక్తస్రావం కలిగిస్తాయి.

వాతావరణంలోకి వాయు కాలుష్యాలను ప్రవేశపెట్టే వివిధ మానవ మరియు సహజ కార్యకలాపాలు టేబుల్ 33.2లో సంగ్రహించబడ్డాయి.

Table 33.2: సాధారణ వాయు కాలుష్య కారకాలు, వాటి మూలాలు మరియు ఆరల్ మరియు ఆంత్రోపోజెనిక్ కాలుష్యం యొకు సహకారం

Air Air Pollutants	Some Sources	Emission N	(% of total)
		Natural	Anthropogenic
Sulphuroxide	Fossil fuel burning, industry,		
(SO _X)	biomass, biomass burning,	50	50
	volcanoes, oceans		
Carbon monixide	Incomplete combustion, methane		
(CO)	oxidation, transportation, biomass,	91	9
	burning, plantmetabolism		
Nitrogen Oxide	Fossil fuel burning, lightening,	40	60
(NO _X)	Biomass burning, soil microbes		
Hydrocarbons	Fossil fules, industrial processes,	84	16
(HC)	evaporation of organic solvents,		
	agricultural burning, plant isoprenes,		
	and other biogenics.		
Suspended	Biomass burning, dust, sea salt,	89	11
Particulate	biogenic aerosols, gasto		
Materials(SPM)	particleconversion.		

పార్యాంశ ప్రశ్నలు 33.5

1) వాతావరణ కాలుష్యం అంటే ఏమిటి?

.....

2) రెండు రేణువుల కాలుష్య కారకాలను పేర్కొనండి?

.....

3) రెండు వాయు కాలుష్య కారకాలను పేర్కొనండి?

.....

4) మీథేస్ వల్ల కాలుష్యానికి కారణమయ్యే ఒక మూలాన్ని పేర్కొనండి?

.....

5) ఫోటోకెమికల్ స్మోగ్గా ఏర్పడే రెండు వాయు కాలుష్య కారకాలను పేర్కొనండి?

.....

33.6 ప్రకృతిపై అధిక వాతావరణ కాలుష్య కారకాల ప్రభావాలు

చాలా కాలుష్య కారకాలు ఇంధన దహన ఉత్పత్తులు. మానవుడు కలప మరియు బొగ్గను కాల్చడం (ప్రారంభించినప్పటి నుండి ఈ కాలుష్య కారకాలు వాతావరణంలోకి విడుదలయ్యాయి. తరువాత, పారి(శామిక కార్యకలాపాలు పెరిగిన కారణంగా కాలుష్య కారకాలు గాలిలోకి విడుదలవుతున్నాయి. ప్రకృతి ఈ కాలుష్య కారకాలన్నింటినీ తొలగించలేకపోయింది, ఎందుకంటే సమతుల్యతను కాపాడుకోవడానికి (పకృతి నిర్వహించగలిగే దానికంటే చాలా ఎక్కువ కాలుష్యాలు జోడించబడ్దాయి. అందువల్ల, గాలి యొక్క వాతావరణ కూర్పు గణనీయంగా మార్చబడిన నిష్పత్తిలో కాలుష్య కారకాలు ఇప్పుడు వాతావరణంలో పేరుకుపోయాయి. ఫోటోకెమికల్ స్మోగ్, యాసిడ్ వర్షం, ఓజోన్ క్షీణత, (గీన్హౌస్ ప్రభావం మరియు గ్లోబల్ వార్మింగ్ వంటి భౌతిక దృగ్విషయాలకు ఇది కారణాలు. ఇవి మొక్కలు, జంతువులు మరియు మానవులకు హాని కలిగిస్తాయి.

Fig.No.33.6: The major effects of atmospheric pollutants
1. ఫోటోకెమికల్ స్మోగ్ మరియు టెంపరేచర్ ఇన్వర్షన్

సల్ఫర్ డయాక్ష్రెడ్ వంటి కాలుష్య కారకాలు మరియు మసి వంటి రేణువుల పదార్థాలు స్తబ్దగా ఉండే గాలి ద్రవ్యరాశిని కలిగి ఉంటాయి, సూర్యకాంతిలో మార్పు చెందుతాయి మరియు ఫోటోకెమికల్ స్మోగ్ అనే షీట్ను ఏర్పరుస్తాయి. SO2 మసి, నైటోజన్ ఆక్ష్రెడ్లు మరియు హైడ్రోకార్బన్లు వంటి కాలుష్య కారకాల సమక్షంలో తక్కువ తేమతో కూడిన పరిస్థితుల్లో సూర్యరశ్మి స్తబ్దగా ఉన్న గాలిపై పడినప్పుడు, ఫోటోకెమికల్ స్మోగ్ ఏర్పడుతుంది.

పొగమంచు అనేది మిల్లులు మరియు కర్మాగారాలు, గృహాలు మరియు ఆటోమొబైల్స్ ద్వారా విడుదలయ్యే పొగమంచు, పొగ మరియు పొగల కలయిక. స్మోగ్ భూమికి దగ్గరగా ఉంటుంది మరియు దృశ్యమానతను తగ్గిస్తుంది మరియు చికాకు కలిగిస్తుంది. సౌర వికిరణం సమక్షంలో హైడ్రోకార్బన్లు మరియు నైట్రోజన్ ఆక్ష్రెడ్ల నుండి పెరాక్సీ ఎసిబైల్ నైట్రేట్ లేదా పాన్ మరియు ఓజోన్ ఏర్పదటం వలన ఫోటోకెమికల్ స్మోగ్ను పాన్ స్మోగ్ అని కూడా పిలుస్తారు. పాన్ మరియు ఓజోన్లను ఫోటోకెమికల్ ఆక్సిడెంట్లు అంటారు. ఈ రెందూ మనిషి ఊపిరితిత్తులకు విషపూరితమైనవి.

ఉష్ణోగత విలోమం పొగను స్థిరపరుస్తుంది మరియు గాలి తుడిచిపెట్టే వరకు భూమి దగ్గర ఉంటుంది. సాధారణంగా, వెచ్చని గాలి వాతావరణంలోకి పెరుగుతుంది. దీనిని ఉష్ణోగత లేదా ఉష్ణ విలోమం అంటారు. స్మోగ్కి గురికావడం వల్ల శ్వాసకోశ సమస్యలు, బ్రోన్రైటిస్, గొంతు నొప్పి, జలుబు, తలనొప్పి మరియు కళ్లకు చికాకు (రెడ్ షాట్ కళ్ళు) కలుగుతాయి. పొగమంచు పంటలను కూడా దెబ్బతీస్తుంది మరియు పంట దిగుబడిని తగ్గిస్తుంది.

Fig.33.7: Formation of Photochemical Smog

2. యాసిద్ వర్వం

విద్యుత్ ప్లాంట్లు మరియు ఇతర పరిశ్రమలచే కాల్చబడిన బౌగ్గ మరియు చమురు SO₂ ను గాలిలోకి విడుదల చేస్తాయి, ఎందుకంటే బౌగ్గ మరియు నూనెలో తక్కువ మొత్తంలో సల్ఫర్ ఉంటుంది. ఆటోమొబైల్ ఎగ్హాస్ట SO₂ మరియు నైట్రోజన్ ఆక్పైద్లను జోడిస్తాయి. కింది ఫోటో రసాయన ప్రతిచర్యల ప్రకారం అవి వాతావరణంలోని ఆక్సిజన్ మరియు నీటి అవిరితో కలిసిపోతాయి.

 $2SO_2 + O_2 + 2H_2O_{4}$

 $4NO_2 + O_2 + 2H_2O$ 4HNO₄

ఈ ప్రతిచర్య స్మోగ్ O3 ద్వారా చేయబడింది. అలా ఏర్పడిన ఆమ్లాలు వర్వం లేదా హిమపాతం సమయంలో గాలి నుండి భూమికి కొట్టుకుపోతాయి. దీనిని ఆమ్ల వర్వం లేదా ఆమ్ల మంచు అంటారు. ఆమ్ల వర్వం కారణంగా సల్ఫేట్లు మరియు నైట్రేట్లను ఏర్పరచడానికి ఆమ్లాలు మట్టిలో ఉండే ఖనిజాలతో చర్య జరుపుతాయి.

వర్షపు నీరు దాని స్వచ్ఛమైన రూపంలో కూడా కరిగిన CO2 కారణంగా pH 5.6తో కొద్దిగా ఆమ్లంగా ఉంటుంది. కానీ బొగ్గ మరియు చమురు మండే పరిశ్రమలకు సమీపంలో ఉన్న ప్రాంతాలు మరియు మోటారు వాహనాలు ఎక్కువ సంఖ్యలో తిరుగుతున్న ప్రదేశాలలో, pH 2కి తగ్గతుంది మరియు వర్షం బలంగా ఆమ్లంగా మారుతుంది.

పర్వత పాదాల కొండలు ఎక్కువగా ప్రభావితమవుతాయి. తేమతో కూడిన గాలి ఎత్తైన ప్రదేశాలకు పెరుగుతుంది, అది వర్షం లేదా మంచుగా కురుస్తుంది, దాని కాలుష్య కారకాలను తగ్గిస్తుంది. వసంతంలొ. మంచు కరుగుతుంది మరియు సరస్సులు మరియు ఇతర నీటి వనరులకు కాలుష్య కారకాలను జోడిస్తుంది. కరిగిన కాలుష్య కారకాలు వర్షం లేదా మంచు (తడి నిక్షేపణ)గా పడిపోయినప్పుడు దానిని ఆమ్ల అవపాతం అంటారు. పొడి వాయువులు మరియు లవణాల నిక్షేపణ పొడి నిక్షేపణ. యాసిడ్ వర్షం అనేక వందల నుండి అనేక వేల కిలోమీటర్ల వరకు వ్యాపిస్తుంది.

FIG 33.8: Acid rain

యాసిద్ వర్వం యొక్క ప్రభావాలు

యాసిడ్ వర్వం యొక్క కొన్ని ప్రభావాలు క్రింద ఇవ్వబడ్డాయి:

- అధిక ఆమ్ల సాంద్రతలు ఫైటోటాక్సిక్ (మొక్కలకు విషపూరితం). యాసిడ్ వర్నాల కారణంగా అదవుల్లో పెద్ద ఎత్తున చెట్లు మృత్యువాత పడ్డాయి.
- 2) సముద్ర జలాలు ఖనిజాలతో సమృద్ధిగా ఉంటాయి మరియు గొప్ప బఫరింగ్ సామర్థ్యాన్ని కలిగి ఉంటాయి. కానీ మంచినీటి వనరుల బఫరింగ్ సామర్థ్యం తక్కువగా ఉంటుంది మరియు యాసిడ్ నిక్షేపాలు మంచినీటి పర్యావరణ వ్యవస్థలపై విష ప్రభావాన్ని చూపుతాయి.
- 3) చేప ఆమ్ల వర్షపు నీటి వనరులలో జీవిస్తుంది కానీ పునరుత్పత్తి చేయడంలో విఫలమవుతుంది. కాబట్టి అలాంటి నీటిలో చేపలు జీవించలేవు.
- 4) భవనాల ఉపరితలం, విగ్రహాలు తుప్పు పట్టడం. సున్నపు రాయి లేదా పాలరాయి (CaCO₃) నిర్మాణాలు ప్రత్యేకంగా దెబ్బతిన్నాయి (Fig. 32. 8). రసాయన ప్రతిచర్య వంటిది CaCO₃ + H2SO₄ => CaSO₄ + CO₂ + H₂O
- 5) వర్షపు నీటి ద్వారా సల్ఫేట్లు బయటకు పోతాయి.
- 6) వాతావరణంలో ఉన్న ఆమ్ల సల్ఫేట్ సోమరితనాన్ని కలిగిస్తుంది. ఆమ్ల పొగమంచు నేలపై పడటం వలన దృశ్యమానత తగ్గుతుంది.
- 3. (గీస్ హౌస్ ఎఫెక్ట్ మరియు గ్లోబల్ వార్మింగ్

గ్రీస్ హౌస్ యొక్క సాహిత్యపరమైన అర్థం మరియు పని వేడిని బంధించడం. గ్లాస్ చాంబర్లో సున్నితమైన మొక్కలను పెంచడం మీరు తప్పక చూసి ఉంటారు. ఇది బయట కంటే లోపల వెచ్చగా ఉంటుంది. గ్లాస్ సౌర వికిరణాలు లోపలికి రావడానికి అనుమతిస్తుంది కానీ గాలి యొక్క అవుట్ వార్డ్ కదలికను పరిమితం చేస్తుంది. రేడియేషన్లు గ్లాస్ చాంబర్ లోపల చిక్కుకొని ఉష్ణోగ్రతను పెంచుతాయి.

CO₂, NO₂, CFCలు (క్లోరోఫ్లోరోకార్బన్లు) వంటి వాయువులు అన్కిరణాలను వాటి గుండా వెళ్లేలా చేస్తాయి, అయితే ఆ తర్వాత వేడిని గ్రహించి భూమి వైపు తిరిగి ప్రసరింపజేస్తాయి. కాబట్టి వీటిని గ్రీన్ హౌస్ వాయువులు అంటారు.

Greenhouse Gases

S no	Gases	Sources	
1	CO ₂	From fossil fuel	
2	NO ₂	From fertilizer plants, automobile exhaust and animal waste	
3	CH4	From bacterial decomposition, biogas, flooded rice fields	
4	CFCs	From Freon, (a refrigerant), aerosol sprays	
5	HALONS	From fire extinguishers.	
	(halocarbons)		

The common greenhouse gases and their sources of pollution are listed below:

4. ఓజోన్ పొర క్షీణత

ఓజోన్ రంద్రం ఏర్పడటం:

భూమి చుట్టూ ఉన్న వాతావరణం యొక్క రెండవ పొర (స్టాటోస్పియర్ (భూమి ఉపరితలం నుండి 15 కి.మీ నుండి 50 కి.మీ ఎత్తులో ఉంది). సూర్యుని శక్తి ఈ పొరలో కొన్ని పరమాణు O₂ని విభజించి (O) పరమాణువులను అందించడానికి చెక్కుచెదరకుండా ఉండే పరమాణు అక్సిజన్తో కలిసి O₃ని ఇస్తుంది. O₃ యొక్క పొర UV కిరణాలను గ్రహిస్తుంది మరియు భూమిని తాకకుండా నిరోధించడం వలన ఒక కవచాన్ని ఏర్పరుస్తుంది. ట్రోపోస్పియర్ అనేది భూమి యొక్క ఉపరితలానికి దగ్గరగా ఉండే వాతావరణ పొర. కాలుష్య కారకాల ద్వారా వాతావరణంలోకి విడుదలయ్యే కోల్ ఫోరో ఫోర్ కార్బన్లు హాలోజన్లు ఓజోన్ షీల్దను నాశనం చేశాయి మరియు అంటార్కిటిక్ యొక్క దక్షిణ ద్రువం మరియు ఆర్కిటిక్ ఉత్తర ద్రువంలో ఓజోన్ రంద్రం కనుగొనబడింది.

ఓజోన్ షీల్డ్ ఎలా క్షీణిస్తోంది?

ఎ) క్లోరోప్లోరో కార్బన్లు (CFCలు) అనేది రిట్రిజిరేటర్లు మరియు ఎయిర్ కండిషనర్లలో ఉపయోగించే ఉష్ణ బదిలీ ఏజెంట్లు మరియు ఫోమ్ కప్పులు మరియు కార్టన్లలో ఫోమింగ్ ఏజెంట్లు.

బి) హాలోజన్స్ లేదా హాలో కార్బన్లు మంటలను ఆర్పే యండ్రాలలో ఉపయోగించే యాంటీ ఫైర్ ఏజెంట్లు. స్పోటో ఆవరణలోని ఓజోన్ ప్రధానంగా క్లోరోఫ్లోరో కార్బన్లు (CFCలు) మరియు హాలోజన్ వాయువు, ముఖ్యంగా క్లోరిన్ ఉండటం వల్ల క్లీణిస్తోంది. అత్యంత శక్తివంతమైన అతినీలలోహిత వికిరణం CFCలను విభజించి, క్లోరిన్న విడుదల చేస్తుంది. విడుదలైన క్లోరిన్ ఓజోన్ను ఆక్సిజన్ అణువుగా మార్చదానికి బాధ్యత వహిస్తుంది. తత్ఫలితంగా ఓజోన్ పొర క్లీణత డ్రింది సమీకరణాల ప్రకారం సంభవిస్తుంది.

 $Cl^* + O_3 => ClO + O_2$

 $CIO^* + O^* => CI^* + O_2$

CFC యొక్క ఒక అణువు స్ట్రాటో ఆవరణలోని 1,00,000 ఓజోన్ అణువులను నాశనం చేయగలదని నమ్ముతారు. ఓజోన్ పూర్తిగా నాశనమైన ప్రాంతాన్ని ఓజోన్ హూల్ అంటారు. అంటార్కిటిక్ మహాసముద్రంలో మొదటి ఓజోన్ రంద్రం గమనించబడింది. స్ట్రాటో ఆవరణలో ఓజోన్ పొర యొక్క ముఖ్యమైన విధి సూర్యుడి నుండి వచ్చే ప్రమాదకరమైన అతినీలలోహిత (UV) రేడియేషన్లను గ్రహించడం ద్వారా మనలను రక్షించడం.

ఓజోన్ క్షీణత యొక్క ప్రభావాలు

ఓజోన్ పొర క్షీణత మరింత UV కిరణాలను ట్రోపోస్పియర్లోకి ప్రవేశించడానికి అనుమతిస్తుంది మరియు అటువంటి హానికరమైన ప్రభావాల (శేణిని కలిగిస్తుంది:

1) ఉపరితలంపై నివసించే మొక్కలు మరియు జంతువులు చనిపోవడం ప్రారంభిస్తాయి.

UV రేడియేషన్ స్మోగ్ ఏర్పడటాన్ని వేగవంతం చేస్తుంది.

3) భూమి యొక్క ఉష్ణోగత పెరుగుతుంది సముద్ర మట్టం పెరుగుదల మరియు లోతట్టు ప్రాంతాల వరదలు.

4) ఎక్కువ UV కిరణాలు నేరుగా మానవుల చర్మంపై పడి చర్మ క్యాన్సర్కు కారణమవుతాయి.

5) మొక్కల ఆకులు క్లోరోసిస్ (పత్రహరితాన్ని కోల్పోవడం మరియు పసుపు రంగులోకి మారడం) చూపుతాయి.

33.7 మానవులపై వాయు కాలుష్యం యొక్క ప్రభావాలు:

కాలుష్య కారకాలపై ఖాతాతో పాటు వాతావరణ కాలుష్యం యొక్క హానికరమైన ప్రభావాలు వివరించబడ్డాయి. మితమైన కాలుష్యానికి దీర్ఘకాలికంగా గురికావడం వల్ల ఎక్కువ వ్యాధులు మరియు మరణాలు సంభవిస్తాయి. మానవులపై వాయు కాలుష్యం యొక్క కొన్ని ప్రతికూల ప్రభావాలు టేబుల్ 33.3లో సంగ్రహించబడ్డాయి.

Table33.3: Effects of air pollutants on humans

Disease / Discomfort	Caused by
Emphysema. Bronchitis	CO, SO ₂ , PAN, O ₃
Eye irritation, headache	SO ₂ , PAN, O ₃
Silicosis, Asbestosis	Suspended particulate matter like silica, asbestos
Coronary artery disease	Tobacco smoke
Anemia, kidney, liver damage	Pb
Fluorosis, Skin Cancer	Fluorides
Poisoning death	со

33.8 వాయు కాలుష్య నియంత్రణ

వాతావరణం కలుషితమవుతున్న ప్రమాదకర రేటు, వాతావరణ కాలుష్యానికి త్వరిత చెక్ పెట్టాల్సిన అవసరం ఎంతైనా ఉంది. శిలాజ ఇంధనాల దహన సమయంలో చాలా వాయు కాలుష్య కారకాలు విడుదలవుతాయి కాబట్టి, వాయు కాలుష్య నియంత్రణ కోసం రెండు ఆచరణాత్మక విధానాలు క్రింద చర్చించబడ్డాయి:

I) కింది జాగ్రత్తలను పాటించడం ద్వారా మనం పీల్చే గాలిలో అవాంఛనీయ మార్పులను నియంతించడం ఒక విదానం:

ఎ) సల్ఫర్ లేని చమురు మరియు బొగ్గను ఉపయోగించడం ద్వారా కాలుష్య కారకాలను గాలిలోకి పరిమితం చేయడం, ఆటోమొబైల్స్లో ఉత్రేరక కన్వర్టర్లను ఉపయోగించడం మరియు వ్యర్థ పదార్థాలను కాల్చడం నివారించడం.

బి) పరిశ్రమల నుండి ఉద్దారాల విడుదలకు వ్యతిరేకంగా కఠినమైన చర్యలు తీసుకోవడం.

II) గాలి, నీరు, సౌరశక్తి మొదలైన శిలాజ ఇంధనాల కంటే ఇతర శక్తి వనరులను ఉపయోగించడం ఇతర విధానం. అంతర్గత దహన యంత్రాలు ఉన్న వాహనాల కంటే సైకిళ్లు మరియు బ్యాటరీతో నడిచే కార్లను ఉపయోగించండి. సర్వీస్ వాహనాలు సీసం (లెడ్) రహిత పెట్రోల్ వాదాలి. అన్నింటికీ మించి సామాన్య ప్రజలకు అవగాహన కల్పించాల్సిన అవసరం ఉంది. వాయు కాలుష్యం ప్రతి మనిషికి ఆందోళన కలిగించాలి. అప్పుడే ఆరోగ్యకరమైన జీవనానికి గాలి మరింత అనుకూలిస్తుంది.

Intext Questions 33.5-33.8

1) పొగమంచు అంటే ఏమిటి?

2) రెండు ఫోటో కెమికల్ ఆక్సిడెంట్లను పేర్కొనండి?
3) అమ్ల వర్షాన్ని ఏర్పరిచే రెండు వాయువులను పేర్కొనండి?
4) ఏవైనా నాలుగు గ్రీన్ హౌస్ వాయువులను పేర్కొనండి?
5) గాలిలో డ్రీయాన్లు మరియు హాలోన్ల మూలాలు ఏమిటి?
6) పాలరాతి విగ్రహాలపై అమ్ల వర్షం ఎలాంటి ప్రభావం చూపుతుంది?
7) వాయు కాలుష్యాన్ని నియంత్రించడానికి ఒక చర్యను పేర్కొనండి?

మీరు ఏమి నేర్చుకున్నారు

- పట్టణీకరణ, పారి(శామికీకరణ మరియు ఇంటెన్సిప్ వ్యవసాయానికి సంబంధించిన మానవ కార్యకలాపాల వల్ల ప్రకృతి సమతుల్యత దెబ్బతింది.
- వాతావరణంలో నైట్రోజన్−78%, ఆక్సిజన్−21%, కార్బన్ డయాక్సైడ్ −0.1 నుండి 0.3%, జడ వాయువులు 1% వాయువులతో రూపొందించబడింది.
- ఎత్తుతో ఉష్ణోగత పెరగడాన్ని పాజిటిప్ లాప్స్ రేట్ అంటారు, అయితే ఎత్తు పెరిగే కొద్దీ ఉష్ణోగతలో తగ్గదల ఉష్ణోగత ప్రతికూల లాప్స్ రేటు.
- కార్బన్ శ్వాసక్రియ మరియు ఫోటోసింథసిస్ ద్వారా దాని అకర్బన రూపం నుండి సేంద్రీయ రూపం మధ్య చురుకుగా చక్రం తిప్పబడుతుంది. క్షయం చక్రం సేంద్రీయ కార్బన్న అకర్బన కార్బన్గా మారుస్తుంది.
- శ్వాసక్రియ సమయంలో ఆహారం ఎంజైమ్ నియంత్రిత దశల (శేణి ద్వారా ఆక్సీకరణం చెందుతుంది, దీనిలో శక్తిని విడుదల చేయడానికి గ్లూకోజ్ యొక్క రసాయన బంధాలు విచ్ఛిన్నమవుతాయి మరియు CO2 విముక్తి పొందుతుంది.
- కిరణజన్య సంయోగక్రియలో ఆకుపచ్చ మొక్కలు సౌర శక్తిని బంధిస్తాయి మరియు CO₂ & H₂O నుండి స్టార్చ్ ను సంశ్లేషణ చేస్తాయి. ఆక్సిజన్ గాలిలోకి విడుదల చేయబడుతుంది; జీవులు సూక్ష్మజీవులచే కుళ్ళిపోతాయి. జీవులలోని కార్బన్ పర్యావరణానికి తిరిగి వెళుతుంది.
- ఓ వాయు కాలుష్యం కారణం
- i) నలుసు పదార్థం (మసి, దుమ్ము)
- ii) హైద్రోకార్బన్లతో కూడిన ఏరోసోల్లు
- NO2 మరియు హైడ్రోకార్బన్లు ఫోటోకెమికల్ స్మోగ్ను ఏర్పరచడానికి సూర్యకాంతి ద్వారా సవరించబడతాయి. స్మోగ్ అనేది పొగ మరియు పొగమంచు కలయిక. ఆటోమొబైల్ ఉద్దారాలు NO2 మరియు హైడ్రోకార్బన్లను అందిస్తాయి. అవి ఓజోన్ మరియు SO2తో పాటు ఫోటోకెమికల్ స్మోగ్ను (Smog) ఏర్పరుస్తాయి.
- స్మోగ్ చల్లని ఇసుక భూమికి సమీపంలో స్థిరపడి ఒక దుప్పటిని ఏర్పరుస్తుంది, అయితే వెచ్చని గాలి దానిని కప్పివేస్తుంది. అందువలన సాధారణ పరిస్థితుల్లో కాకుండా పైన వెచ్చని గాలి మరియు దిగువన చల్లని గాలితో ఉష్ణోగ్రత విలోమం ఉంటుంది.
- SO₂, మరియు NO₂, విగ్రహాలపై H₂SO₄ మరియు HNO₃గా పడిపోయే ఆమ్లాలను ఏర్పరుస్తాయి మరియు వాటిని పాడు చేస్తాయి. దీనిని యాసిడ్ అవక్షేపణ అంటారు. యాసిడ్ వర్వం చెట్లను చంపుతుంది, చేపలలో పునరుత్పత్తిని నిరోధిస్తుంది మరియు పేలవమైన దృశ్యమానతను కలిగిస్తుంది. (గీన్ హౌస్ వాయువులు CO₂, NO₂, CH₄, క్లోరోఫ్లోరోకార్బన్లు మరియు హాలోజన్లు. అవి సౌర వికిరణాన్ని ట్రూప్ చేసి గ్లోబల్ వార్మింగ్కు కారణమవుతాయి. (గీన్ హౌస్ ప్రభావం కారణంగా గ్లోబల్ వార్మింగ్ కరువు, సముద్ర మట్టం పెరగడం,

వర్షాభావం మరియు నీటి కొరతకు దారితీస్తుంది.

- స్టాటో ఆవరణలో ఓజోన్ పొర ఉంది, అది గ్రహించడం ద్వారా UV రేడియేషన్ నుండి మనలను రక్షిస్తుంది.
- రిట్రిజిరేటర్లు మరియు ఫోమ్ కప్పులలో ఉపయోగించే క్లోరోఫ్లోరోకార్బన్లను ఏరోసోల్లుగా మరియు మంటలను ఆర్పే యండ్రాలలో ఉపయోగించే హాలోజన్లను గాలిలోకి విడుదల చేసినప్పుడు సౌర వికిరణాల హానికరమైన ప్రభావాల నుండి మనలను రక్షించే ఓజోన్ షీల్డ్ క్షీణిస్తుంది. ఓజోన్ క్షీణత చర్మ క్యాన్సర్కు కారణమయ్యే మానవులపై హానికరమైన ప్రభావాలను కలిగిస్తుందని భయపడుతున్నారు. ఓజోన్ పొరను ఒక ప్రాంతంలో పూర్తిగా నాశనం చేయడాన్ని ఓజోన్ రంద్రం అంటారు. వాయు కాలుష్యం ఎంఫిసెమా మరియు టోన్హైటిస్, కంటి చికాకు, ఫ్లోరోసిస్, క్యాన్సర్ వంటి శ్వాసకోశ వ్యాధులకు కారణమవుతుంది మరియు ప్రాణాంతకం కూడా కావచ్చు.
- నియంత్రణ చర్యలలో సల్ఫర్ రహిత చమురు మరియు బౌగ్గు వినియోగం, పవన మరియు సౌర శక్తి వంటి ప్రత్యామ్నాయ ఇంధన వనరుల వినియోగం, సైకిల్ మరియు బ్యాటరీతో నడిచే వాహనాలను ఉపయోగించడం, వ్యర్థాలను విచక్షణారహితంగా కాల్చడం ఆపడం, పరిశ్రమల నుండి వెలువడే ఉద్దారాలను విడుదల చేయడానికి కఠినమైన చర్యలు తీసుకోవడం మరియు అన్నింటికి మించి అవగాహన కల్పించడం వంటివి ఉన్నాయి. సాధారణ ప్రజలు మరియు వాయు కాలుష్య కారకాలను విడుదల చేయకుండా వారిని హెచ్చరించాలి.

TERMINAL EXERCISE:

- 1) ప్రకృతిలో శిలాజ ఇంధనాలు ఎలా ఏర్పడతాయి?
- 2) మొక్కలు మరియు జంతువులపై SO_2 మరియు NO_2 యొక్క హానికరమైన ప్రభావాలు ఏమిటి?
- 3) కార్బన్ మోనాక్ష్రెడ్ విషపూరితం గురించి ఒక గమనిక ద్రాయండి?
- 4) థర్మల్ ఇన్వర్షన్ అంటే ఏమిటి మరియు అది ఎలా కలుగుతుంది?
- 5) యాసిడ్ వర్వం యొక్క వివిధ ప్రభావాలను వివరించండి?
- 6) ఓజోన్ రంద్రం అంటే ఏమిటి? ఓజోన్ క్షీణత యొక్క ప్రభావాలు ఏమిటి?
- 7) గ్లోబల్ వార్మింగ్ కారణంగా సముద్ర మట్టం ఎందుకు పెరుగుతుంది?
- 8) (గీన్ హౌస్ వాయువులు గ్లోబల్ వార్మింగ్కు ఎలా కారణమవుతాయి?
- 9) వివిధ వాయు కాలుష్య కారకాల వల్ల మానవులలో కలిగే ఐదు వ్యాధులు/అసౌకర్యాలను పేర్కొనండి?
- 10) వాయు కాలుష్య నియంత్రణకు సంబంధించిన వివిధ చర్యలను వివరించండి?

33.1-33.4

ఇంటెక్న్ ప్రశ్నలకు సమాధానాలు

- 1. నైటోజన్
- 2. నత్రజని మరియు ఆక్సిజన్
- 3. మొక్కలు; ఎందుకంటే అది తమ సొంత ఆహారాన్ని సంశ్లేషణ చేసుకుంటాయి.
- 4. గ్లూకోజ్
- 5. క్లోరోఫిల్
- 6. క్షయం మరియు కుళ్ళిపోవడం ద్వారా
- 7. వినియోగదారులు
- 8. i) అగ్నిపర్వత విస్పోటనం మరియు ii) దహనం
- 9. స్టాటో ఆవరణ

33.5

- 1. వాతావరణంలో అవాంఛనీయమైన మరియు హానికరమైన పదార్శాల అవాంఛనీయ స్థాయి
- 2. సూట్, ఫ్లోరైడ్, Pb డస్ట్, NaCI (ఏదైనా రెండు)
- 3. SO₂, CO, CO₂, NH₃, H₂S (ඛි<u></u>ದිನా)
- 4. మెథనోజెనిక్ బ్యాక్టీరియా, రుమినెంట్ పొట్ట, నీరు నిరిచిన వరి పొలాల్లో కిణ్వ ప్రక్రియ (ఎవరైనా)
- 5. PAN మరియు O3

33.3

- 1. పొగమంచు మరియు పొగ
- 2. O3 మరియు PAN
- 3. SO మరియు NO
- 4. CO₂, NO₂, CH₄, CFC హాలోజెన్లు
- 5. రిట్రిజెరాంట్ల, మంటలను ఆర్పేవి
- 6. తుప్పు పడతాయి.

7. వాయు కాలుష్య కారకాలను విడుదల చేసే ఇంధన వినియోగాన్ని తగ్గించడం మరియు శుభమైన పునరుత్పాదక ఇంధనాలను ఉపయోగించడం.

8. కాలుష్యం వల్ల కలిగే ప్రమాదాల గురించి అందరికీ అవగాహన కల్పించండి.

34.A నీటి కాలుష్యం

అన్ని జీవుల ఉనికికి నీరు చాలా అవసరం. గృహావసరాలకు అదనంగా, వ్యవసాయం, పరిశ్రములు, మత్య మరియు పర్యాటకం మొదలైన వాటికి నీరు చాలా ముఖ్యమైనది. పెరుగుతున్న జనాభా, పట్టణీకరణ మరియు పారిశ్రామికీకరణ నీటి లభ్యత తగ్గదానికి దారితీసింది. రోజురోజుకు కలుషితం అవుతుండటంతో వాడే నీటి నాణ్యత కూడా దిగజారుతోంది. మీరు కనీసం కొన్ని ఆరోగ్య ప్రమాదాలు మరియు నీటి కాలుష్యం యొక్క హానికరమైన ప్రభావాల గురించి తెలిసి ఉండవచ్చు. ఈ పాఠంలో నీటి కాలుష్య కారకాల యొక్క వివిధ రకాలు, మూలాలు మరియు ప్రభావాల యొక్క వివరణాత్మక ఖాతా ఇవ్వబడింది. నీటి కాలుష్య నియంత్రణకు సంబంధించిన కొన్ని పద్ధతులు మరియు చట్టసభల గురించి కూడా చర్చించారు.

లక్ష్యాలు

ఈ పాఠాన్ని చదివిన తర్వాత మీరు వీటిని వివరించడం:

- భూమి యొక్న నీటి వనరుల జాబితా వివరించడం
- నీటి కాలుష్యం మరియు దాని వివిధ పారామితులను వివరించడం
- నీటి కాలుష్యాల యొక్క ప్రధాన రకాలు, వాటి మూలాలు మరియు ప్రభావాలను వివరించడం
- సహజ మరియు మానవ నిర్మిత కాలుష్య కారకాల మధ్య తేదా వివరించడం
- బయోలాజికల్ ఆక్సిజన్ డిమాండ్ (BOD) భావనను ఉపయోగించడం
- నీటి కాలుష్య నివారణకు పద్దతులు వివరించడం
- మురుగునీటి యొక్క ప్రాధమిక, ద్వితీయ మరియు తృతీయ శుద్దిని సరిపోల్చండి మరియు
- దేశంలో నీటి కాలుష్య నివారణకు అవసరమైన శాసనపరమైన చర్యలను ఉపయోగించడం

34.1 భూమిపై నీటి వనరులు

మన గ్రహం భూమి ఉపరితలంలో దాదాపు మూడు వంతులు నీటితో కప్పబడి ఉన్నాయని మీకు తెలిసి ఉండవచ్చు. అయితే, వినియోగానికి ఇది చాలా తక్కువ. భూమిపై ఉన్న నీటిలో ఎక్కువ భాగం (సుమారు 97%) సముద్రాలు మరియు మహాసముద్రాలలో ఉంది. తాగడానికి, వ్యవసాయానికి, పారిశ్రామిక అవసరాలకు ఉపయోగపడనంత ఉప్పగా ఉంటుంది. మిగిలిన 3% మంచినీరు; వీటిలో 75% ద్రువ మంచు గడ్డలలో మరియు హిమానీనదాలలో బంధించబడి ఉన్నాయి. మరియు భూగర్భ జలాల వలె భూమి యొక్క ఉపరితలం క్రింద చాలా లోతుగా ఉన్నాయి.

మనం ఉపయోగించగల, రెండు మూలాల నుండి మనకు వస్తుంది:

i) ఉపరితల నీరు ii) భూగర్భ జలం
 i) ఉపరితల నీరు:

వర్షం మరియు మంచు మంచినీటికి మంచి సహజ వనరులు. భూమిపై కురిసే అవపాతం (వర్షప్ర నీరు మరియు మంచు) మొత్తంలో మూడింట ఒక వంతు మొక్కలచే శోషించబడుతుందని అంచనా వేయబడింది మరియు మరొక మూడింట ఒక వంతు మట్టిలోకి ప్రవేశిస్తుంది మరియు మిగిలిన మూడవ వంతు ఉపరితలం నుండి ప్రవాహాలుగా ప్రవహిస్తుంది. మరియు నదులు. ప్రవాహాలు, నదులు మరియు సరస్సులను ఏర్పరచడానికి ప్రవహించే అవపాతం యొక్క ఈ భాగాన్ని ఉపరితల నీరు అంటారు.

స్రవాహాలు, నదులు మరియు సరస్సులలోకి ప్రవహించే అవపాతం (వర్వం లేదా మంచు) ఉపరితల జలం అంటారు. ఉపయోగ యోగ్యమైన ఉపరితల నీటి యొక్క చిన్న భాగం హైద్రోలాజికల్ సైకిల్ ద్వారా నిరంతరంగా నింపబడుతుంది, Fig.34.1:

Fig.34.1: A schematically representation of Hydrological Cycle

జలసంబంధ చక్రంలో మహాసముద్రాలు, నదులు మరియు ఇతర వనరుల నుండి నీటిని ఆవిరి చేయడం ద్వారా మేఘాలు ఏర్పడతాయి. నీటి అవిరితో సంతృప్తతపై ఉన్న మేఘాలు భూమి యొక్క ఉపరితలంపై అవపాతం తిరిగి పడేలా చేస్తాయి. ఉపరితలంపై, నీరు నదులకు మరియు చివరకు మహాసముద్రాలకు వెళుతుంది. నీరు మళ్లీ ఆవిరైపోతుంది మరియు చక్రం కొనసాగుతుంది. కాలుష్య కారకాలను హానిచేయని పదార్ధాలుగా విదగొట్టే కొన్ని జీవులను కలిగి ఉన్నందున ఉపరితల నీరు తనను తాను శుభం చేసుకునే సహజ ధోరణిని కలిగి ఉంటుంది.

ii) భూగర్భ జలాలు:

గురుత్వాకర్షణ ఫలితంగా భూమిలోకి చౌచ్చుకుపోయే అవపాతం మరియు దాని కింద ఉన్న నేల కణాలు మరియు రాళ్ల మధ్య రంధ్రాలను నింపే భాగాన్ని భూగర్భ జలం అంటారు. మట్టి మరియు రాళ్ల యొక్క నీటిని మోసే పొరలను జలాశయాలు అంటారు. వ్యవసాయ మరియు పారిశ్రామిక అవసరాలకు భూగర్భ జలాలు చాలా ముఖ్యమైనవి. ముఖ్యంగా గ్రామాలు మరియు చిన్న పట్టణాలలో నీటి సరఫరాకు తరచుగా బావులు మరియు స్పింగ్ల రూపంలో భూగర్భజలం మాత్రమే మూలం. మంచి నీటి వనరులు ఉన్నప్పటికీ, మనకు ఉపయోగపడే నీటి కొరత ఉంది. పెరుగుతున్న జనాభా, పట్టణీకరణ మరియు పారిశ్రామికీకరణ దీనికి కారణం. ఆప్టిమైజ్ చేయాల్సిన అవసరం ఉంది. నీటి వినియోగం మరియు వర్షపు నీటి సేకరణ భూగర్భ జలాల సంరక్షణ, రీసైక్లింగ్ పద్ధతులను ఉపయోగించడం మొదలైన వాటి ద్వారా ఉపరితల ప్రవహించే నీటిని కూడా సంరక్షించడం.

34.2 నీటి కాలుష్యం–పారామితులు

గృహ మరియు పారిశ్రామిక వినియోగం తర్వాత పెద్ద మొత్తంలో నీరు తిరిగి విడుదల చేయబడుతుంది. ఇది గృహ వ్యర్థాలు మరియు పారిశ్రామిక వ్యర్థాలతో కలుషితమవుతుంది. ఈ కాలుష్యం అనుమతించబడిన నిర్దిష్ట సాంద్రతలకు మించి చేరుకున్నప్పుడు, దానిని కాలుష్యం అంటారు. మరియు కలుషితాలను కాలుష్య కారకాలు అంటారు. నీటి కాలుష్యం అనేది జీవులకు హాని కలిగించే పదార్థాల ద్వారా (ప్రవాహాలు, సరస్సులు, సముద్రాలు, భూగర్భ జలాలు లేదా మహాసముద్రాలను కలుషితం చేయడం అని నిర్వచించవచ్చు. నీటిలో సహజంగా ఉండే పదార్థాల సాంద్రత పెరిగితే నీరు కూడా కలుషితమైందని చెబుతారు. నీటి కాలుష్యం అనేది జీవులకు హాని కలిగించే పదార్థాల ద్వారా (ప్రవాహాలు, సరస్సులు, సముద్రాలు, భూగర్భ జలాలు లేదా మహాసముద్రాలను కలుషితం చేసే విధంగా రూపొందించబడవచ్చు. పారిశ్రామికీకరణ మరియు జనాభా విస్ఫోటనం నీటి కాలుష్యానికి రెండు ముఖ్యమైన కారకాలు. దిగువ పేర్కొన్న కింది పారామితులు నీటిలో పేర్కొన్న ఏకాగతను మించి ఉన్నప్పుడు నీటిని కలుషితం అని పిలుస్తారు.

i) భౌతిక పారామితులు:

రంగు, వాసన, టర్బిడిటీ, రుచి, ఉష్ణోగత మరియు విద్యుత్ వాహకత భౌతిక పారామితులను కలిగి ఉంటాయి మరియు కాలుష్యానికి మంచి సూచికలు.

ఉదాహరణకు, రంగు మరియు టర్బిడిటీ కలుషిత నీటికి కనిపించే సాక్ష్యం, అయితే అసహ్యకరమైన వాసన లేదా సాధారణ రుచి కంటే చేదు మరియు వ్యత్యాసం కూడా నీటిని తాగడానికి పనికిరానిదిగా చేస్తుంది.

ii) రసాయన పారామితులు:

వీటిలో కార్భొనేట్లు, సల్పేట్లు, క్లోరైడ్లు, ఫ్లోరైడ్లు, నైట్రేట్లు మరియు లోహ అయాన్లు ఉంటాయి. ఈ రసాయనాలు నీటిలో ఉండే మొత్తం కరిగిన ఘనపదార్థాలను ఏర్పరుస్తాయి.

iii) జీవ పారామితులు:

జీవసంబంధ పారామితులలో ఆల్గే, శిలీంద్రాలు, వైరస్లు, [పోటోజోవా మరియు బ్యాక్టీరియా వంటి పదార్థాలు ఉంటాయి. నీటిలో ఉండే జీవ రూపాలు కాలుష్య కారకాల వల్ల మంచి స్థాయిలో [పభావితమవుతాయి. నీటిలోని కాలుష్య కారకాలు తక్కువ మరియు ఎత్తైన మొక్కలు మరియు జంతు జీవితాల జనాభాలో తగ్గదలకు కారణం కావచ్చు. అందువలన, జీవ పారామితులు నీటిలో కాలుష్యం యొక్క పరోక్ష సూచనను అందిస్తాయి.

34.3 నీటి కాలుష్యం–మూలాలు

నీటి కాలుష్య కారకాలు నీటి శరీరంలో ఏదైనా భౌతిక, రసాయన లేదా జీవసంబంధమైన మార్పులను చేయగల పదార్థాలను సూచిస్తాయి. ఇవి జీవనంపై అవాంఛనీయ ప్రభావాన్ని చూపుతాయి. జీవులు ముందుగా చెప్పినట్లుగా, గృహ, వ్యవసాయ మరియు పారిశ్రామిక అవసరాలకు ఉపయోగించే నీరు కొన్ని అవాంఛనీయ మరినాలతో విడుదల చేయబడుతుంది. ఈ కాలుష్యం నీటి కాలుష్యానికి దారితీస్తుంది, దీనిని సాధారణంగా మంచినీటి కాలుష్యం అంటారు. మంచినీటి కాలుష్యాన్ని రెండు రకాలుగా వర్గీకరించవచ్చు: ఉపరితల నీటి కాలుష్యం మరియు భూగర్భ జల కాలుష్యం.

34.3.1 ఉపరితల నీటి కాలుష్యం

కాలుష్య కారకాలు (పవాహం, నది లేదా సరస్సులోకి (పవేశించినప్పుడు ఇవి ఉపరితల నీటి కాలుష్యానికి దారితీస్తాయి. ఉపరితల నీటి కాలుష్యం అనేక వనరులను కలిగి ఉంది. వీటిని ఇలా వర్గీకరించవచ్చు:

- 1. పాయింట్ మరియు నాన్-పాయింట్ సోర్ఫెస్
- 2. సహజ మరియు మానవజన్య మూలాలు

i) పాయింట్ మరియు నాస్–పాయింట్ సోర్ఫెస్

కాలుష్య కారకాలు లేదా వ్యర్ధాలను నేరుగా వివిధ నీటి వనరులలోకి విడుదల చేసే బాగా నిర్వచించబడిన మూలాలను పాయింట్ సోర్సెస్ అంటారు. గృహ మరియు పారి(శ్రామిక వ్యర్థాలు ఈ రకానికి ఉదాహరణలు. కాలుష్యం యొక్క పాయింట్ మూలాలను సమర్థవంతంగా తనిఖీ చేయవచ్చు. మరోవైపు, నీటి కాలుష్యం యొక్క నాన్–పాయింట్ మూలాలు చెల్లాచెదురుగా లేదా పెద్ద (ప్రాంతాలలో విస్తరించి ఉన్నాయి. ఈ రకమైన వనరులు పర్యావరణ మార్పుల ద్వారా పరోక్షంగా కాలుష్య కారకాలను పంపిణీ చేస్తాయి మరియు (పవాహాలు మరియు సరస్సులలోని కలుషితాలలో ఎక్కువ భాగం కారణమవుతాయి. ఉదాహరణకు, వ్యవసాయ పొలాలు, నిర్మాణ (పదేశాలు, పాడుబడిన గనుల నుండి (పవహించే కలుషిత నీరు (పవాహాలు మరియు సరస్సులలోకి (పవేశిస్తుంది. నాన్–పాయింట్ మూలాలను నియండ్రించడం చాలా కష్టం.

ii) సహజ మరియు మానవజన్య మూలాలు

ఇంతకు ముందు చెప్పినట్లుగా, సహజంగా లభించే పదార్థాల సాంద్రత పెరగదాన్ని కాలుష్యం అని కూడా అంటారు. అటువంటి పెరుగుదల యొక్క మూలాలను సహజ వనరులు అంటారు. సిల్టేషన్ (మట్టి, ఇసుక మరియు ఖనిజ కణాలను కలిగి ఉంటుంది) అటువంటి సహజ మూలం. ఇది ఒక సాధారణ సహజ దృగ్విషయం, ఇది చాలా నీటి వనరులలో సంభవిస్తుంది. విచక్షణారహితంగా అటవీ నిర్మూలన వలన నేల వదులుగా ఉంటుంది. మరియు వరద నీరు పర్వతాల నుండి సిల్ట్ను వాగులు, నదులు మరియు సరస్సులలోకి తీసుకువస్తుంది.

మరోవైపు, నీటి కాలుష్యానికి దారితీసే మానవ కార్యకలాపాలను మానవజన్య లేదా మానవ నిర్మిత నీటి కాలుష్య వనరులు అంటారు. ఉదాహరణకు, నదులు, సరస్సులు, ప్రవాహాలు మరియు సముద్రాలలోకి వెళ్లే గృహ (మురుగు మరియు వ్యర్థ జలాలు), పారిశ్రామిక మరియు వ్యవసాయ వ్యర్థాలు మానవ మూలాలు. ప్రవహించే నీటి ద్వారా భూమి నుండి బయటకు వెళ్లి వివిధ నీటి వనరులలోకి ప్రవేశించే కొన్ని పదార్థాలు కూడా ఈ వర్గానికి చెందినవి. నీటి కాలుష్యం యొక్క మానవజన్య మూలాలు Fig.34.2లో చూపబడ్దాయి.

Fig.34.2: Anthropogenic Sources of water pollution

34.3.2 భూగర్భ జల కాలుష్యం

కలుషితమైన నీరు భూమిలోకి ప్రవేశించి, జలాశయంలోకి ప్రవేశించినప్పుడు, అది భూగర్భ జల కాలుష్యానికి దారితీస్తుంది. మన గ్రామాలు మరియు అనేక టౌన్షిప్ల, భూగర్భ జలాలు మాత్రమే తాగునీటికి ఆధారం. అందువల్ల భూగర్భజలాలు కలుషితం కావడం తీవ్రమైన అంశం. భూగర్భ జలాలు అనేక విధాలుగా కలుషితమవుతాయి. పచ్చి మురుగును మట్టి, సీపేజ్ పిట్స్ మరియు సెప్టిక్ ట్యాంక్లలలో వేయడం వల్ల భూగర్భ జలాలు కలుషితమవుతాయి. Fig. 34. 3. ద్రవం గుండా వెళ్ళడానికి అనుమతించబడినప్పుడు మట్టి యొక్క పోరస్ పొరలు ఘన కణాలను నిలుపుకుంటాయి. కరిగే కాలుష్య కారకాలు భూగర్భ జలాల్లో కలిసిపోతాయి. వీటితో పాటుగా, నత్రజని ఎరువులు అధికంగా ఉపయోగించడం మరియు పారిశ్రామిక యూనిట్ల ద్వారా విషపూరిత వ్యర్థాలు మరియు క్యాన్సర్ కారకాలను కూడా తనిఖీ చేయకుండా విడుదల చేయడం వల్ల చాలా వరకు భూమి యొక్క ఉపరితలం గుండా నెమ్మదిగా (క్రిందికి దిగి భూగర్భ జలాలతో కలుస్తాయి. ముఖ్యంగా నీటి మట్టం ఎక్కువగా ఉన్న ప్రాంతాల్లో (అంటే భూమి ఉపరితలం దగ్గర నీరు అందుబాటులో ఉన్న చోట) ఈ సమస్య చాలా తీద్రంగా ఉంటుంది. భూమి యొక్క ఉపరితలం (క్రింద అందుబాటులో ఉన్న పెద్ద ఖాళీ స్థలం కారణంగా భూగర్భ జలాలు చాలా దూరం వరకు కదులుతాయి. ఈ విధంగా కొన్ని మలినాలు ఒక సమయంలో భూగర్భ జలాల్లోకి ప్రవేశించినట్లయితే, అవి మూలాధార బిందువు నుండి దూరంగా ఉన్న డేటాను గమనించవచ్చు. అటువంటి సందర్భంలో నీటి కాలుష్యం యొక్క మూలాన్ని అంచనా వేయడం కష్టం. అయినప్పటికీ, సస్పెండ్ చేయబడిన మలినాలు మరియు బాక్టీరియా కలుషితాలు శోషక మరియు వడపోతగా మరియు నీరు ద్రావకం వలె పనిచేయడం ద్వారా సీపేజ్ ప్రక్రియలో తొలగించబడతాయి. పోరస్ రాక్ ద్వారా భూగర్భజలాల కదలిక చాలా నెమ్మదిగా ఉంటుంది కాబట్టి, భూగర్భజలంలో కలిసిన కాలుష్య కారకాలు తక్షణమే పలుచన చేయబడవు. ఇంకా, భూగర్భజలాలకు గాలికి ప్రావ్యత లేదు (ఉపరితల నీటికి విరుద్ధంగా) కాబట్టి, భూగర్భజలంలో హానిచేయని ఉ తృత్తులుగా కాలుష్య కారకాల ఆక్సీకరణ జరగదు.

34.4 నీటి కాలుష్య కారకాలు

కాలుష్య కారకాలు నీటి వనరులలోకి ప్రవేశించే వివిధ వనరులను మీరు చదివారు. ఈ మూలాల నుండి ఉ త్పన్న మయ్యే వివిధ రకాల కాలుష్య కారకాల గురించి ఇప్పుడు తెలుసుకుందాం. వీటిని స్థూలంగా క్రింది రకాల కింద పెట్టవచ్చు.

- i) మురుగు కాలుష్య కారకాలు (గృహ మరియు మున్సిపల్ వ్యర్థాలు)
- ii) పారిశ్రామిక కాలుష్య కారకాలు
- iii) వ్యవసాయ కాలుష్య కారకాలు
- iv) రేడియోధార్మిక మరియు ఉష్ణ కాలుష్య కారకాలు

i) గృహ మరియు మున్సిపల్ కాలుష్య కారకాలు:

మురుగునీటిలో చెత్త, సబ్బులు, డిటర్జెంట్లు, వ్యర్థ ఆహారం మరియు మానవ విసర్జనలు ఉంటాయి మరియు నీటి కాలుష్యానికి అతిపెద్ద వనరులు. వ్యాధికారక (వ్యాధి కలిగించే) సూక్ష్మజీవులు (బ్యాక్టీరియా, శిలీంద్రాలు, ట్రోటోజోవా, ఆల్గే) మురుగునీటి ద్వారా నీటి వ్యవస్థలోకి ప్రవేశించి వ్యాధి సోకుతుంది. టైఫాయిడ్, క్లోరా, గ్యాస్టోఎంటెరిటిస్ మరియు విరేచనాలు సాధారణంగా వ్యర్ధాలు సోకిన నీటిని తాగడం వల్ల సంభవిస్తాయి. మురుగు ద్వారా కలుషితమైన నీరు కొన్ని ఇతర బాక్టీరియాలను మోసుకెళ్లవచ్చు మరియు వైరస్లు వాటంతట అవే వృద్ధి చెందవు, కానీ అతిధేయ జీవుల కణాలలో పునరుత్పత్తి చేస్తాయి. అవి పోలియో, వైరల్ హెపటైటిస్ మరియు క్యాన్సర్ వంటి అనేక వ్యాధులకు కారణమవుతాయి. జల జీవులకు హాని కలిగించే డీఆక్సిజనేషన్ చేయదానికి బాధ్యత వహిస్తాయి. వివిధ నీటి వనరులలోకి ట్రవేశించే ఇతర పదార్థాలు మొక్కల పోషకాలు, అనగా నైట్రేట్లు మరియు ఫాస్ఫేట్లు. అవి సాధారణంగా ఆల్గల్ బ్లూమ్ (నీలం–ఆకుపచ్చ జాతులు) అని పిలువబడే ఆల్గే పెరుగుదలకు తోడ్పడతాయి. ఈ ప్రక్రియను యూట్రోఫికేషన్ అంటారు. మరియు తదుపరి విభాగంలో వివరంగా చర్చించబడుతుంది.

ii) పారిశ్రామిక కాలుష్య కారకాలు:

అనేక పరిశ్రమలు నదులు లేదా మంచినీటి ప్రవాహాల సమీపంలో ఉన్నాయి. ప్రమాదకర సేంద్రీయ మరియు అకర్బన వ్యర్థాలతో పాటు (ఉదా. అమ్లాలు, క్షారాలు, సైనైడ్లు, కోరైడ్లు మొదలైనవి) స్వీకరించే (కోమియం, ఆర్సెనిక్, సీసం, పాదరసం మొదలైన అత్యంత విషపూరితమైన భారీ లోహాల వంటి నదుల్లోకి శుద్ధి చేయని వ్యర్థాలను విడుదల చేయడానికి ఇవి బాధ్యత వహిస్తాయి. వస్త్రాల నుండి వ్యర్థాలు, చక్కెర, కాగితం మరియు పల్ప్ మిల్లులు, చర్మశుద్ధి కర్మాగారాలు, రబ్బరు మరియు పురుగుమందుల పరిశ్రమలు. ఈ కాలుష్య కారకాలు చాలా వరకు సూక్ష్మజీవుల (నాన్ బయోడిగ్రేడబుల్ అని పిలుస్తారు) ద్వారా విచ్ఛిన్నం చేయడానికి నిరోధకతను కలిగి ఉంటాయి, అందువల్ల పంటల పెరుగుదలను దెబ్బతీస్తుంది మరియు కలుషితమైన నీరు త్రాగదానికి సురక్షితం కాదు.

ప్లాస్టిక్, కాస్టిక్ సోదా మరియు కొన్ని శిలీంద్ర నాశినులు మరియు క్రిమిసంహారకాలను తయారు చేసే కర్మాగారాలు సమీపంలోని నీటి వనరులలో ఇతర వ్యర్థ పదార్థాలతో పాటు పాదరసం (భారీ లోహం)ను విడుదల చేస్తాయి. పాదరసం బ్యాక్టీరియా, ఆల్గే, చేపల ద్వారా అహార గొలుసులోకి ప్రవేశిస్తుంది. మరియు చివరకు మానవ శరీరంలోకి ప్రవేశిస్తుంది. 1953–60 కాలంలో జపాన్లోని మినామాటా బే విషాదం ద్వారా పాదరసం విషపూరితం స్పష్టంగా కనిపించింది. పాదరసం వినియోగం వల్ల చేపలు చనిపోయాయి మరియు చేపలు తిన్నవారు పాదరసం విషపూరితం స్పష్టంగా కనిపించింది. పాదరసం వినియోగం వల్ల చేపలు చనిపోయాయి మరియు చేపలు తిన్నవారు పాదరసం విషంతో ప్రభావితమయ్యారు మరియు చాలా మంది చనిపోయారు. పాదరసం విషం యొక్క తేలికపాటి లక్షణాలు నిరాశ మరియు చిరాకు, అయితే తీవ్రమైన విష ప్రభావాలు పక్షవాతం, అంధత్వం, పిచ్చితనం, పుట్టకతో వచ్చే లోపాలు మరియు మరణానికి కూడా కారణమవుతాయి. నీటిలో మరియు చేపల కణజాలాలలో పాదరసం యొక్క అధిక సాంద్రత అవక్షేపాలలో ఏరోబిక్ బ్యాక్టీరియా ద్వారా కరిగే మోనోమీథైల్ మెర్యురి, (CH₃, Hg) మరియు అస్థిర డై మిథైల్ మెర్యురీ [(CH₃)2Hg)] ఏర్పడటం వలన ఏర్పడుతుంది.

iii) వ్యవసాయ వ్యర్థాలు:

ఎరువులు, పురుగుమందులు, పొలాలు, కబేళాలు, పౌట్టీ ఫారాలు, లవణాలు మరియు సిల్ట్ నుండి వ్యర్థాలు వ్యవసాయ భూముల నుండి (పవహిస్తాయి. పెద్ద మొత్తంలో ఎరువులు (ఫాస్ఫేట్లు మరియు నైట్రేట్లు) వాడటం వలన జలశయాలు పోషకాలతో సమృద్ధిగా మారుతాయి. ఇది యూటోఫికేషన్ మరియు దాని ఫలితంగా కరిగిన ఆక్సిజన్ క్షీణతకు దారితీస్తుంది. నైట్రేట్లు అధికంగా ఉన్న నీటిని తీసుకోవడం మానవ ఆరోగ్యానికి ముఖ్యంగా చిన్న పిల్లలకు హానికరం. పురుగుమందులు (DDT, డీట్డైన్, ఆట్డైన్, మలాథియాన్, కార్బరిల్ మొదలైనవి) కీటకాలు మరియు ఎలుకల తెగుళ్లను చంపడానికి ఉపయోగించే విషపూరిత పురుగుమందుల అవశేషాలు తాగునీటి ద్వారా లేదా ఆహార గొలుసు (బయోమాగ్నిఫికేషన్) ద్వారా మానవ శరీరంలోకి ప్రవేశిస్తాయి. ఈ సమ్మేళనాలు నీటిలో తక్కువ ద్రావణీయతను కలిగి ఉంటాయి కానీ కొవ్వులలో ఎక్కువగా కరుగుతాయి. ఉదాహరణకు, నది నీటిలో DDT యొక్క గాధత చాలా తక్కువగా ఉండవచ్చు, అందులో చేపలు మానవ వినియోగానికి సరిపోతాయి. మన దేశంలో పురుగుమందుల వాడకం చాలా వేగంగా పెరుగుతోంది.

అత్యంత విషపూరితమైన ఈ రసాయనాలలో కొన్ని పొలాల్లో మేసే జంతువుల ద్వారా జీవక్రియ చెందుతాయి. అందువల్ల, ఈ విష రసాయనాలు తరచుగా మానవ ఆహార గొలుసులో గమనించబడ్డాయి. మానవులలో ఈ రసాయనాలు ఉండటం వల్ల హార్మోన్ల అసమతుల్యత ఏర్పడి క్యాన్సర్కు దారితీయవచ్చు.

iv) భౌతిక కాలుష్య కారకాలు:

భౌతిక కాలుష్య కారకాలు వివిధ రకాలుగా ఉంటాయి. వాటిలో కొన్ని క్రింద చర్చించబడ్డాయి:

(ఎ) రేడియోధార్మిక వ్యర్థాలు: నీటిలో కనిపించే రేడియో న్యూక్రైడ్లు రేడియం మరియు పొటాషియం-40. ఈ ఐసోటోపులు ఖనిజాల నుండి లీచింగ్ కారణంగా సహజ వనరుల నుండి ఉద్భవించాయి. యురేనియం మరియు థోరియం గనులు, అణు విద్యుత్ ప్లాంట్లు మరియు పరిశ్రమలు, పరిశోధనా ప్రయోగశాలలు మరియు రేడియో ఐసోటోప్లను ఉపయోగించే ఆసుపత్రుల నుండి ప్రమాదవశాత్తూ వ్యర్థపదార్థాల లీకేజీ వల్ల కూడా నీటి వనరులు కలుషితమవుతాయి. రేడియోధార్మిక పదార్థాలు నీరు మరియు ఆహారం ద్వారా మానవ శరీరంలోకి ప్రవేశిస్తాయి మరియు రక్తం మరియు కొన్ని ముఖ్యమైన అవయవాలలో పేరుకుపోతాయి. అవి ట్యూమర్లు మరియు క్యాన్సర్కు కారణమవుతాయి.

(బి) థర్మల్ మూలాలు: వివిధ పరిశ్రమలు, అణు విద్యుత్ ప్లాంట్లు మరియు థర్మల్ ప్లాంట్లకు శీతలీకరణ కోసం నీరు అవసరం మరియు ఫలితంగా వేడి నీరు తరచుగా నదులు లేదా సరస్సులలోకి విడుదలవుతుంది. ఇది ఉష్ణ కాలుష్యానికి దారితీస్తుంది, జల జీవావరణ వ్యవస్థలో పర్యావరణ అసమతుల్యతకు కారణమవుతుంది. అధిక ఉష్ణోగత కరిగిన ఆక్సిజన్ స్థాయిని తగ్గిస్తుంది (అంటే సముద్ర జీవులకు చాలా అవసరం) నీటి ఉష్ణోగతలలో ఆకస్మిక మార్పు వలన చేపలు మరియు ఇతర జలచరాలు ప్రభావితమవుతాయి.

(సి) అవక్షేపాలు: ప్రవాహాలు, సరస్సులు లేదా మహాసముద్రాలకు తీసుకువెళ్లిన నేల కణాలు అవక్షేపాలను ఏర్పరుస్తాయి. అవక్షేపం వాటి గణనీయమైన పరిమాణం కారణంగా కాలుష్య కారకాలుగా మారుతుంది. నేల కోత అనేది పంట భూమి నుండి వరద నీటి ద్వారా తీసుకువెళ్ళే నేల, అవక్షేపణకు కారణమవుతుంది. అవక్షేపాలు పెద్ద మొత్తంలో పోషక పదార్థాన్ని ప్రవేశపెట్టడం ద్వారా జలవరణాన్ని దెబ్బతీస్తాయి.

(V) పెట్రోలియం ఉత్పత్తులు:

పెట్రోలియం ఉత్పత్తులు ఇంధనం, సరళత, ప్లాస్టిక్ తయారీ మొదలైనవాటికి విస్త్రతంగా ఉపయోగించబడతాయి మరియు ప్రకృతిలో విషపూరితమైనవి. ముడి చమురు మరియు ఇతర సంబంధిత ఉత్పత్తులు సాధారణంగా ఓడలు,

39

ట్యాంకర్లు, పైప్లైన్లు మొదలైన వాటి నుండి ప్రమాదవశాత్తూ చిందటం ద్వారా నీటిలోకి ప్రవేశిస్తాయి. ప్రమాదవశాత్తుగా జరిగే లీకేజీలు, చమురు శుద్ధికర్మాగారాలు, చమురు అన్వేషణ స్థలాలు మరియు ఆటోమొబైల్ సేవా కేంద్రాలు వివిధ నీటి వనరులను కలుషితం చేస్తాయి. నీటి ఉపరితలంపై తేలియాడే ఆయిల్ స్లిక్ సముద్ర జీవుల మరణానికి కారణమవుతుంది. మరియు సముద్ర పర్యావరణ వ్యవస్థను తీవ్రంగా ప్రభావితం చేస్తుంది.

Fig 34.3: sources of water pollution (i) industrial effluent (ii) solid wastes (iii) domestic waste

A list of various types of water pollutants, their sources and effects have been summarised in

Pollutant		Sources of Pollutant	Effects and Significance
1	Pathogens	Sewage, human and animal wastes, natural and urban	Depletion of dissolved oxygen in water (foul odour) health effects
		runoff from land,industrial waste (diseases)	(out breaks of water borne
2	Organic Pollutants	Automobile and machine waste,	Disruption of marine life,
	• Oil and grease	tankers pills, off shore oil leakage	aesthetic damage (Toxic effects
	• Pesticides	Chemicals used for better yield	(harmful for aquatic life),
	and weedicides	from agriculture Industrial	possible genetic defects and
	• Plastics	and household waste	cancer; kills fish Eutrophication,
	• Detergents		aesthetics
3	Inorganic pollutants	Agricultural runoff	Algal bloom and eutrophication,
	Fertilizers		nitrates cause
	(phosphates and nitrates)		methemoglobinemia
	Acids and alkalies	Mine drainage, industrial	Kill fresh water organisms, unit
		wastes, natural and urban	for drinking, irrigation and
		runoffwater	industrial use.
4	Radioactive materials	Natural sources, uranium mining	Cancer and genetic defects
		and processing, hospitals and	
		research laboratories using	
		radioisotopes	
5	Heat	Cooling water for industrial,	Decreases solubility of oxygen in
		nuclear and thermal plants	water, disrupts aquatic cosystems
6	Sediments	Natural erosion, runoff	Affects water quality, reduces
		fromagricultural land and	fish population
		construction sites	

Table34.1: Types of pollutants, their sources and effects

ఇంటెక్న్ ప్రశ్నలు 34.1

1. నీటి కాలుష్యాన్ని నిర్వచించండి.

.....

2. ఉపరితల నీటి ద్వారా మీరు ఏమి అర్థం చేసుకున్నారు?

3. నీటి కాలుష్యానికి సంబంధించిన ఏవైనా మూడు మానవజన్య వనరులను జాబితా చేయండి?

.....

4. నీటి కాలుష్యాన్ని సూచించే పారామితులను జాబితా చేయండి?

.....

5. మినమటా వ్యాధికి కారణమయ్యే మూలకం పేరు?

.....

34.5 నీటి కాలుష్యం మరియు కొన్ని జీవ ప్రభావాలు

అవపాతం లేదా వర్షం రూపంలో సహజ నీటి వనరు ప్రకృతిలో లభించే స్వచ్ఛమైన రూపం. అయితే ఉ పరితలంపైకి చేరిన తర్వాత భూగర్భంలోకి చేరిన తర్వాత అది అనేక కాలుష్య కారకాలతో కలుషితమవుతుంది. నీటి నాణ్యతను పాడుచేయదానికి కారణమైన కొన్ని జీవ కారకాలు కూడా ముందుగా పేర్కొన్నాయి. వీటిలో ఆల్గే మరియు బాక్టీరియా వంటి మొక్కలు ఉన్నాయి, ఇవి జల వ్యవస్థలలో పోషకాల చేరికకు కారణమవుతాయి. ఈ పోషకాల చేరడం క్రింద వివరించిన యూట్రోఫికేషన్ అనే పరిస్థితికి దారి తీస్తుంది.

34.5.1 యూటోఫికేషస్.

యూట్రోఫికేషన్ అనేది నేల కోత కారణంగా నీటిని శరీరం నెమ్మదిగా నైట్రేట్లు మరియు ఫాస్పే వంటి మొక్కల పోషకాలతో సమృద్ధిగా మారుతుంది మరియు చుట్టుపక్కల నుండి బయటకు వెళ్లే (పక్రియ. ఈ దృగ్విషయాన్ని అర్థం చేసుకోవడానికి (పయత్నిద్దాం. సరస్సు లేదా ఏదైనా జలాశయం వంటి నీటి వ్యవస్థ గృహ వ్యర్థాల నుండి సేంద్రియ పదార్థాలను పెద్ద మొత్తంలో (పవహిస్తుంది మరియు చుట్టుపక్కల భూమి నుండి (పవహిస్తుంది. పెరుగుతున్న మానవ జనాభా, ఇంటెన్సిప్ వ్యవసాయం మరియు వేగవంతమైన పారి(శామిక వృద్ధి గృహ వ్యర్థాలు, వ్యవసాయ అవశేషాలు, పారి(శామిక వ్యర్థాలు భూమి మరియు వివిధ నీటి వనరులలోకి విడుదల చేయడానికి దారితీసింది. సేంద్రీయ వ్యర్థాల నుండి పోషకాలు ఏరోబిక్ (ఆక్సిజన్ అవసరం) బ్యాక్టీరియా ద్వారా విడుదల చేయబడతాయి, అవి దానిని కుళ్ళిపోయేలా చేస్తాయి. ఈ (పక్రియలో కరిగిన ఆక్సిజన్ వినియోగించబడుతుంది. మరింత ఎక్కువ సేంద్రీయ పదార్థం నీటిలోకి (పవేశించినందున, నీటి యొక్క డియోక్సి జననం ఎక్కువగా ఉంటుంది మరియు పోషకాల ఉత్పత్తి పెరుగును. ఈ పోషకాలు ఆల్గే మరియు డక్ వీడ్ వంటి ఇతర పెద్ద నీటి మొక్కల అసాధారణ పెరుగుదలను సారవంతం చేస్తాయి. ఎక్కువ ఆల్గే పెరిగేకొద్దీ, నీటిలో ఆక్సిజన్ లోపం కారణంగా జలచరాలు చనిపోతాయి (అనగా, నీటి యొక్క డీఆక్సిజనేషన్). అటువంటి జలాశయం యూట్రోఫీడ్ అని చెప్పబడింది మరియు ప్రక్రియను యూట్రోఫికేషన్ అంటారు. యూట్రోఫికేషన్ అనే పదం గ్రీకు పదం నుండి ఉద్భవించింది, దీని అర్థం బాగా పోషకమైనది (eu:true, trophos:feeding)

యూట్రోఫికేషన్ అనేది జలాశయంలో సహజంగా ఉండే సేంద్రీయ వ్యర్థాలపై ఏరోబిక్ బ్యాక్టీరియా చర్య ద్వారా లేదా మానవ కార్యకలాపాల ద్వారా ఆల్గే అసాధారణంగా పెరగదానికి మరియు నీటిలో ఆక్సిజన్ లోపం కారణంగా మరణానికి కారణమయ్యే జీవరాశుల కొరకు పెద్ద మొత్తంలో పోషకాలను విడుదల చేసే (పక్రియగా నిర్వచించబడింది.

34.5.2 బయోలాజికల్ ఆక్సిజన్ డిమాండ్ (BOD)

జలాశయంలోని సేంద్రీయ వ్యర్థాలను విచ్ఛిన్నం చేయడంలో 27°C వద్ద మరియు చీకటిలో 3 రోజులలో సూక్ష్మజీవులు ఉపయోగించే ఆక్సిజన్ నాణ్యతను దాని జీవ ఆక్సిజన్ డిమాండ్ (BOD) అంటారు.

దానిని ఈ క్రింది విధంగా వివరించవచ్చు.

నీటిలో అనేక సేంద్రీయ సమ్మేళనాలు లేదా వ్యర్థాలు ఉన్నాయని మీకు తెలుసు. వ్యవస్థలో ఉన్న సూక్ష్మజీవులు తమ సొంత వినియోగం మరియు పెరుగుదల కోసం నీటిలో ఉన్న ఆక్సిజన్ను ఉపయోగించి ఈ వ్యర్థాలపై పనిచేస్తాయి.

సూక్ష్మజీవుల ద్వారా సేంద్రీయ వ్యర్థాలను విచ్ఛిన్నం చేయదానికి అవసరమైన ఆక్సిజన్ మొత్తం జీవ ఆక్సిజన్ డిమాండ్ (BOD)గా నిర్వచించబడింది. జల వ్యవస్థ యొక్క BOD విలువ ఆధారపడి ఉంటుంది:

- సేంద్రీయ వ్యర్థాల రకం మరియు మొత్తం
- దానిపై పనిచేసే జీవులు
- ఉష్ణోగత మరియు pH

నీటిలోని సేంద్రియ వ్యర్థాలు ఎంత ఎక్కువగా ఉంటే, దానిని జీవశాగ్ర్షుపరంగా విచ్ఛిన్నం చేయదానికి అవసరమైన ఆక్సిజన్ పరిమాణం ఎక్కువగా ఉంటుంది, అందువల్ల నీటి BOD విలువ ఎక్కువగా ఉంటుంది. నీటిలోని కాలుష్య స్థాయిని అంచనా వేయడంలో ఈ విలువ మంచి కొలత. తక్కువ కలుషితమైన నీరు BOD యొక్క తక్కువ విలువను చూపుతుంది. నీటి వనరు యొక్క కాలుష్యాన్ని నిర్వచించదానికి దాని విలువ ఒక ప్రమాణంగా ఉపయోగించబడుతుంది.

34.5.3 బయోమాగ్నిఫికేషన్

వివిధ రకాల విష రసాయనాలు ఆహార గొలుసుల ద్వారా కదులుతాయి. కీటకాల తెగుళ్లు, శిలీంద్రాలు, మూలికలను నియంత్రించడానికి విషపూరిత పురుగుమందులను పిచికారీ చేయవచ్చు, కానీ అవి ఆహార గొలుసులో మరియు ఇతర (లక్ష్యం కాని) జీవులకు హాని.

ఉదాహరణకు, చేపలు మరియు పక్షులు వంటి లక్ష్మరహిత జీవులకు హాని కలిగించని ఏకాగ్రతతో దోమలను నియంత్రించడానికి U.S.లో DDT (స్పే చేయబడింది. చిత్తడి నేలలు మరియు ప్లాంక్టన్లలో DDT పేరుకుపోతుంది. పాచిని చేపలు తింటాయి మరియు చేపలు ఎక్కువ గాధతను కలిగి ఉంటాయి. దాని శరీరంలోని DDT ఇంకా, పక్షులు చేపలను తిన్నప్పుడు, అవి ఇంకా ఎక్కువ సాంద్రతను పొందుతాయి. ఆహార గొలుసులో ఒకదాని కంటే ఎక్కువగా పేరుకుపోయిన విష రసాయనాల సాంద్రత పెరగడాన్ని "బయోమాగ్నిఫికేషన్" అంటారు. ఇది కొన్ని సమయాల్లో ఆహార గొలుసులో అత్యధిక స్థాయిని ఆక్రమించే మాంసాహారుల (ద్వితీయ వినియోగదారులు) పునరుత్పత్తి మరియు మనుగడకు ముప్పు కలిగిస్తుంది.

34.6 నీటి శుద్ది

గృహ కార్యకలాపాలు, పరిశ్రమలు లేదా చెత్త పల్లపు ప్రాంతాల ద్వారా ఉత్పన్నమయ్యే వ్యర్థ జలాలను మురుగు

అంటారు. మురికినీరు సస్పెండ్ చేయబడిన కొల్లాయిడ్ మరియు కరిగిన రూపంలో ఘనపదార్ధాలను కలిగి ఉంటుంది.

మురుగునీరు నీటి ద్వారా సంక్రమించే వ్యాధులకు ప్రధాన కారణాలలో ఒకటి అందువల్ల మురుగునీటి శుద్ధి ముఖ్యమైన పనులలో ఒకటి. మునిసిపల్ వ్యర్థాలను శుద్ధి చేయడంలో ప్రధానంగా సస్పెండ్ చేయబడిన ఘనపదార్థాలు, ఆక్సిజన్ డిమాండ్ చేసే పదార్థాలు మరియు హానికరమైన బాక్టీరియాలను తొలగించడం జరుగుతుంది. ఇప్పుడు మునిసిపల్ ట్రీట్మెంట్ ప్రక్రియలను వర్తింపజేయడం ద్వారా మురుగు నుండి ఘన అవశేషాల పారవేయడం మెరుగుపరచబడింది.

ఈ వ్యర్థ జలాల శుద్ధి క్రింది మూడు దశల్లో జరుగుతుంది:

i) ධාර්ධාන් සිදීන් (Primary Treatment)

ii) ධාුම්රා ඩපීන් (Secondary Treatment)

iii) ඡූම්య ඩර්ඡා (Tertiary Treatment)

1) ప్రాథమిక చికిత్స: వ్యర్థ జలాలను నదిలోకి లేదా ప్రవహించే ఆవిరిలోకి వదిలినప్పుడు, అవక్షేపణ, గడ్డకట్టడం మరియు వడపోత ద్వారా చికిత్స జరుగుతుంది. దీనిని ప్రాథమిక చికిత్స అంటారు. తాగునీటి అవసరాలకు నీరు అవసరమైతే, ద్వితీయ మరియు తృతీయ చికిత్సలు అని పిలువబడే తదుపరి చికిత్స చేయించుకోవాలి. ప్రాథమిక చికిత్సలో నీటిని శుద్ది చేయడానికి క్రింది దశలు నిర్వహించబడతాయి:

i) అవక్షేపణ: మురుగునీటి శుద్ధి కర్మాగారంలో ఈ ప్రయోజనం కోసం ప్రత్యేకంగా నిర్మించిన పెద్ద ట్యాంకులలో ఈ దశను నిర్వహిస్తారు. కలుషిత నీరు స్థిరపడటానికి అనుమతించబడుతుంది, తద్వారా సిల్ట్, బంకమట్టి మరియు ఇతర పదార్థాలు దిగువన స్థిరపడతాయి మరియు నీరు నెమ్మదిగా బయటకు వెళ్లదానికి అనుమతించబడుతుంది. ఫైన్ పార్టికల్స్ స్థిరపడవు మరియు తదుపరి దశలో తొలగించాల్సిన అవసరం ఉంది.

ii) **గడ్డకట్టడం:** ఫైన్ పార్టికల్స్ మరియు కొల్లాయిడ్ సస్పెన్షన్ గడ్డకట్టడం అనే ప్రక్రియ ద్వారా పెద్ద కణాలుగా

మిళితం చేయబడతాయి. ఈ దశ పొటాష్ ఆలమ్ వంటి కోగ్యులెంట్స్ (ఫ్లోక్యులెంట్స్) అని పిలువబడే ప్రత్యేక రసాయనాల జోడింపు ద్వారా నిర్వహించబడుతుంది. పెద్ద కణాలు దిగువకు స్థిరపడతాయి లేదా తదుపరి దశలో తరలించబడతాయి.

iii) వడపోత: సస్పెండ్ చేయబడిన కణాలు, ఫ్లోక్యులెంట్లు, బ్యాక్టీరియా మరియు ఇతర జీవులు నీటిని ఇసుక లేదా మెత్తగా విభజించబడిన బొగ్గ ద్వారా లేదా కొన్ని పీచు పదార్థాల ద్వారా పంపడం ద్వారా ఫిల్టర్ చేయబడతాయి. ఈ దశల్లో సేకరించిన మొత్తం మలినాలను బురద అంటారు. ఇది విలువైన ఎరువుగా ఉపయోగించబడుతుంది. కంపోజిట్ చేయడంలో (అనగా వాయురహిత బ్యాక్టీరియా చర్య), ఈ బురద వాయువును విడుదల చేస్తుంది. ఇది ప్రధానంగా మీథేన్ వాయువును కలిగి ఉంటుంది, దీనిని వంట అవసరాలకు ఉపయోగిస్తారు.

2) సెకండరీ లేదా బయోలాజికల్ ట్రీట్మెంట్: ప్రాథమిక చికిత్స తర్వాత నీరు త్రాగడానికి సరిపోదు మరియు తదుపరి చికిత్స చేయించుకోవాలి. ఇది ద్వితీయ లేదా జీవ చికిత్స ద్వారా చేయబడుతుంది. సాధారణంగా ఉపయోగించే పద్ధతి ఏమిటంటే, కలుషితమైన నీటిని పెద్ద రాళ్లు మరియు కంకరతో వ్యాపించేలా చేయడం, తద్వారా పోషకాలు మరియు అక్సిజన్ అవసరమయ్యే వివిధ సూక్ష్మజీవుల పెరుగుదల ప్రోత్సహించబడుతుంది. కొంత కాల వ్యవధిలో ఫాస్ట్ మూవింగ్ ఫుడ్ చైన్ సెటప్ చేయబడుతుంది. ఉదాహరణకు, బ్యాక్టీరియా కలుషితమైన నీటి నుండి సేంద్రీయ పదార్థాన్ని వినియోగిస్తుంది; ప్రోటోజోవా బ్యాక్టీరియాపై జీవిస్తుంది. అల్లే మరియు శిలీంద్రాలతో సహా ప్రతీ జీవన రూపం పర్యావరణాన్ని శుభపరిచే ప్రక్రియకు దోహదం చేస్తుంది. దీనిని నీటి ద్వితీయ చికిత్స అంటారు. ఇది క్రింది ప్రక్రియలను కరిగి ఉంటుంది.

i) మృదుత్వం: ఈ చికిత్స ద్వారా కాల్షియం మరియు మెగ్నీషియం యొక్క అవాంఛనీయ కాటయాన్లు కఠినమైన నీటి నుండి తొలగించబడతాయి. Ca+² అయాన్లను కార్బోనేట్లుగా అవక్షేపించడానికి నీరు సున్నం మరియు సోడా బూడిదతో శుద్ధి చేయబడుతుంది లేదా కేటయాన్ ఎక్సేంజర్ల ద్వారా పంపబడుతుంది. ఇది నీటిని మృదువుగా చేస్తుంది.

ii) వాయుప్రసరణ: ఈ ప్రక్రియలో నీటికి ఆక్సిజన్ను జోడించదానికి గాలిని బలవంతంగా పంపడం ద్వారా మృదువైన నీరు గాలికి గురవుతుంది. ఇది కార్బన్ డయాక్పైడ్ మరియు నీరు వంటి హానిచేయని ఉత్పత్తులలో సేంద్రియ పదార్థం యొక్క బ్యాక్టీరియా కుళ్ళిపోవడాన్ని ప్రోత్సహిస్తుంది. ఆక్సిజన్ చేరిక కార్బన్ డయాక్ష్రెడ్ను తగ్గిస్తుంది. సల్ఫైడ్ మొదలైన నీరు ఇంకా తాగునీటి అవసరాలకు సరిపోవడం లేదు. వ్యాధికారక మరియు ఇతర సూక్ష్మజీవులను చంపడం అవసరం. ఇది తదుపరి చికిత్సలో చేయబడుతుంది.

3) తృతీయ చికిత్స (Tertiary Treatment):

తృతీయ చికిత్స వాస్తవానికి నీటిని క్రిమిసంహారకం చేస్తుంది. బ్యాక్టీరియాను చంపడానికి క్లోరిన్ సాధారణంగా

ఉపయోగించే క్రిమిసంహారక మందు. అయినప్పటికీ, క్లోరిన్ నీటిలో ఉండే సేంద్రియ పదార్ధాల జాడలతో కూడా ప్రతిస్పందిస్తుంది. మరియు అవాంఛనీయమైన క్లోరినేబెడ్ హైద్రోకార్బన్లను (విషపూరిత మరియు సంభావ్య క్యాన్సర్ కారకాలు) ఏర్పరుస్తుంది. అందువల్ల క్లోరిన్ వాయువును పంపే ముందు నీటిలో సేంద్రీయ పదార్థాన్ని తగ్గించడం మంచిది. క్లోరిన్ చికిత్స కంటే అతినీలలోహిత వికిరణం, ఓజోన్ వాయువు చికిత్స లేదా రివర్స్ ఆస్మాసిస్ వంటి క్రిమిసంహారక ఇతర పద్ధతులకు ప్రాధాన్యత ఇవ్వబడుతుంది. కానీ ఈ పద్ధతులు మరింత ఖరీదైనవి. పటం 34.3 మొత్తంగా మురుగునీటి శుద్ది పుక్రియ యొక్క స్పష్టమైన చిత్రాన్ని ఇస్తుంది.

ట్రీట్మెంట్ ప్లాంట్, వ్యర్థాలు దాని బల్క్ మరియు టాక్సిసిటీని తగ్గించదానికి స్ర్రీస్ల్, ఛాంబర్లు మరియు రసాయన ప్రక్రియల (శేణి ద్వారా పంపబడతాయి. ప్రాథమిక చికిత్స సమయంలో సస్పెండ్ చేయబడిన ఘనపదార్థాలు మరియు అకర్బన పదార్థాల యొక్క అధిక శాతం మురుగు నుండి తొలగించబడుతుంది. ద్వితీయ దశ సహజ జీవ ప్రక్రియలను వేగవంతం చేయడం ద్వారా సేంద్రీయ పదార్థాన్ని తగ్గిస్తుంది. నీటిని తిరిగి ఉపయోగించాలను కున్నప్పుడు తృతీయ చికిత్స జరుగుతుంది. ఇక్కడ 99% ఘనపదార్థాలు తొలగించబడతాయి.

పాఠ్యాంశ ప్రశ్నలు 34.2

1. యూటోఫికేషన్ను నిర్వచించండి.

.....

2. యుట్రోఫీడ్ చెరువులో జలచరాలు ఎందుకు చనిపోతాయి?

.....

3. BOD యొక్క ప్రాముఖ్యత ఏమిటి?

.....

4. బయోమాగ్నిఫికేషన్ అంటే ఏమిటి?

.....

5. నీటి చికిత్స యొక్క దశలను పేర్కొనండి?

34.7 నీటి కాలుష్యాన్ని నిరోధించదానికి చట్టపరమైన చర్యలు

నాణ్యమైన మరియు కలుషితం కాని నీటిని ఉపయోగించడం ముఖ్యం. వినియోగాన్ని బట్టి నాణ్యత ప్రమాణాలు మారవచ్చు. ఈ విషయంలో వ్యక్తిగత ప్రయత్నాలు చెల్లించబడతాయి, అయినప్పటికీ, చట్టం రూపంలో ఒక సాధారణ విధానం ఎల్లప్పుడూ మరింత ప్రభావవంతంగా ఉంటుంది. నీటి కాలుష్య నివారణకు 1974లో 'ప్రివెన్షన్ అండ్ కంట్రోల్ ఆఫ్ వాటర్ పొల్యూషన్ యాక్ట్' దోహదపడింది. పర్యావరణ (రక్షణ) చట్టం ప్రకారం నీటి కాలుష్యానికి ప్రమాణాలు నిర్దేశించబద్దాయి. ఇవి ఈ క్రింది విధంగా ఇవ్వబద్దాయి.

- భూమిపై (లోతట్ట ఉపరితల నీరు, పబ్లిక్ మురుగు కాలువలు, నీటిపారుదల భూమి మరియు తీర ప్రాంతాలు)
 నీటి వనరులలో వ్యర్థాలను విడుదల చేయడానికి నీటి కాలుష్య కారకాలకు సాధారణ ప్రమాణాలు
- పరిశ్రమ కోసం నిర్దిష్ట ప్రమాణాలు
- వివిధ పరిశ్రశమల కోసం విడుదల చేయవలసిన వ్యర్థ జలాల పరిమాణానికి నిర్వచించబడిన ప్రమాణాలు.
- పారిశ్రామిక యూనిట్ ఉత్పత్తి సామర్థ్యం ఆధారంగా నిర్దిష్ట కాలుష్య పరిమాణాన్ని పరిమితం చేసే ప్రమాణాలు.

నీటి 'టివెన్షన్ అండ్ కంట్రోల్ ఆఫ్ పొల్యూషన్ యాక్ట్– 1974' ప్రకారం కొత్త / ఇప్పటికే ఉన్న నీటి కాలుష్య పరిశ్రమలకు సమ్మతి ఇవ్వడానికి / పునరుద్ధరించడానికి రాష్ట్ర కాలుష్య నియంత్రణ బోర్డులకు అధికారం ఉంది. డిఫాల్టింగ్ పరిశ్రమలపై కఠిన చర్యలు తీసుకునేందుకు రాష్ట్ర ప్రభుత్వాలకు కూడా అధికారం ఇచ్చారు.

పైన పేర్కొన్న నియమాలు మరియు నిబంధనలపై చర్య తీసుకోవడం మరియు వివిధ ప్రయోజనాల కోసం ఉపయోగించే నీటి నాణ్యతను మెరుగుపరచడానికి వ్యక్తిగత చర్యలను అనుసరించడం అత్యవసరం.

పార్యాంశ ప్రశ్నలు 34.3

1. బురద ఎలా ఉపయోగించబడుతుంది?

.....

2. కలుషిత నీటిని తాగడానికి సరిపోయే దశలను పేర్కొనండి?

.....

3. కలుషితమైన నీటిని క్రిమిసంహారక చేయడానికి క్లోరినేషన్ ఎందుకు అత్యంత కావాల్సిన పద్దతి కాదు?

.....

మీరు ఏమి నేర్చుకున్నారు

- నీటి కాలుష్యం అనేది జీవులపై అవాంఛనీయ ప్రభావాన్ని చూపే ఏదైనా భౌతిక, రసాయన లేదా జీవ మార్పులను సూచిస్తుంది.
- మురుగునీరు, పారిశ్రామిక, వ్యవసాయ కాలుష్యం మరియు భౌతిక కాలుష్యాలు నీటి కాలుష్యం యొక్క వివిధ వనరులు. ఈ మూలాధారాలు పాయింట్ సోర్స్ కి పరిమితం కావచ్చు లేదా పెద్ద ప్రాంతాలలో (నాన్–పాయింట్ సోర్ను) విస్తరించి ఉండవచ్చు.
- మురుగునీరు, ఎరువులు, డిటర్జెంట్లు, పరిశ్రమలు విడుదల చేసే విషపూరిత వ్యర్థాలు భూగర్భ జలాల కాలుష్యానికి కొన్ని మూలాలు.
- ఫాస్పేటిక్, మరియు నత్రజని కలిగిన ఎరువులు ఆల్గల్ బ్లూమ్ మరియు నీటిలో తీవ్రమైన ఆక్సిజన్ క్షీణతకు కారణమవుతాయి. ఈ ప్రక్రియ యూటోఫికేషన్.

- నీటిలోని సెంద్రీయ వ్యర్థాలను అధోకరణం చేయడంలో సూక్ష్మజీవులకు అవసరమైన ఆక్సిజన్ పరిమాణం దాని జీవ ఆక్సిజన్ డిమాండ్ (BOD) పరంగా నిర్వచించబడింది.
- నీటి వనరులలోకి విడుదలయ్యే విష పదార్థాల జీవసంబంధమైన మాగ్నిఫికేషన్ జల జీవులకు మరియు చివరికి మానవ జీవితానికి తీవ్రమైన ముప్పును కలిగిస్తుంది.
- కలుషితమైన నీటిని వివిధ చికిత్సలకు గురి చేయడం ద్వారా మానవ వినియోగానికి ఉపయోగపడుతుంది.
- వివిధ నీటి వనరుల కాలుష్యాన్ని నియంత్రించడానికి మన దేశంలో శాసనపరమైన చర్యలు రూపొందించబడ్డాయి.

టెర్మిసల్ వ్యాయామం (Terminal Exercise)

- 1. వివిధ రకాల నీటి కాలుష్య కారకాలు ఏమిటి? వాటి పర్యవసానాలను తెరియజేయండి.
- 2. మంచినీటి వనరులపై డిటర్జెంట్ల ప్రభావం ఏమిటి?
- 3. భూగర్భ జలాల కాలుష్యం యొక్క వివిధ వనరులు ఏమిటి?
- 4. 'మెథేమోగ్లోబినేమియా' అనే వ్యాధి ఎలా వస్తుంది?
- 5. నీటి యొక్క స్టాఫ్యూటోఫికేషన్ కోసం దశలను సూచించండి.
- 6. మినామాటా బే విషాదం ఏమిటి?
- 7. క్లోరినేషన్ ద్వారా తాగునీటిని శుద్ది చేసే ముందు ఎలాంటి జాగ్రత్తలు తీసుకోవాలి?

పార్యాంశ ప్రశ్నలకు సమాధానాలు

34.1

1) నీటి కాలుష్య కారకాలు నీటి శరీరంలో ఏదైనా భౌతిక, రసాయన లేదా జీవసంబంధమైన మార్పులను చేయగల పదార్థాలను సూచిస్తాయి.

- 2) విభాగం 34.4
- 3) విభాగం 34.3.1 చూడండి
- 4) విభాగం 34.1
- 5) పాదరసం

34.2

- 1) విభాగం 34.5.1 చూడండి
- 2) విభాగం 34.5.1 చూడండి
- 3) విభాగం 34.5.2 చూడండి

4) విభాగం 34.5.3 చూడండి

5) విభాగం 34.7 చూడండి

34.3

1) ఎరువుగా.

2) అవక్షేపణ, గడ్డకట్టడం, వడపోతతో సహా ప్రాథమిక చికిత్స మృదుత్వం మరియు వాయువుతో సహా ద్వితీయ చికిత్స మరియు నీటి క్రిమిసంహారకానికి సంబంధించిన తృతీయ చికిత్స.

3) ఎందుకంటే క్లోరిన్ సేంద్రీయ పదార్థంతో చర్య జరిపి క్యాన్సర్కు కారణమయ్యే అత్యంత విషపూరితమైన క్లోరినేటెడ్ హైద్రోకార్బన్లను ఉత్పత్తి చేస్తుంది.

35. A హెవీ మెటల్ మరియు రేడియోధార్మిక కాలుష్యం

భూమి యొక్క క్రస్ట్ర్.లలో అనేక లోహాలు జాడలు ఏర్పడతాయి. Pb, Hg, Zn, Cd వంటి లోహాలు భారీ లోహాలు. కొన్ని భారీ లోహాలు జీవులకు ప్రయోజనకరంగా ఉంటాయి. కానీ మానవ కార్యకలాపాల ద్వారా అధిక స్థాయిలో భారీ లోహాలు పర్యావరణంలోకి ప్రవేశిస్తే, అవి మానవుల మరియు ఇతర జీవుల ఆరోగ్యానికి మరియు మనుగడకు హాని కలిగిస్తాయి. మీరు ఈ పాఠంలో కొన్ని భారీ లోహాల విష ప్రభావాల గురించి తెలుసుకుంటారు.

లక్ష్యాలు

ఈ పాఠాన్ని చదివిన తర్వాత మీరు వీటిని చేయగలరు:

- హెవీ మెటల్ను నిర్వచించడం.
- భారీ లోహాల ద్వారా పర్యావరణం కలుషితమయ్యే మూలాలను వివరించడం.
- జీవులపై Pb, Hg, Cd కాలుష్యం యొక్క ప్రభావాలను వివరించడం మరియు
- హెవీ మెటల్ కాలుష్యాన్ని తగ్గించడానికి నివారణ చర్యలు మరియు చర్యల జాబితాను వివరించడం.

35.1 హెవీ మెటల్ అంటే ఏమిటి?

హెవీ మెటల్ అంటే సాంద్రత 5g cm⁻³ కంటే ఎక్కువ. కొన్ని భారీ లోహాలు సీసం, కాడ్మియం, పాదరసం, అర్సెనిక్ సెలీనియం, అలాగే ఇనుము, రాగి, మాంగనీస్, జింక్ మొదలైనవి. ఈ లోహాలన్నీ పరమాణు సంఖ్య 20 కంటే ఎక్కువ.

ఒక ట్రేస్ మెటల్ అనేది 1000 ppm (పార్ట్స్ పర్ మిలియన్ లేదా మి.గ్రా./లీటర్) లేదా భూమి యొక్క క్రస్ట్ తక్కువ సాంద్రత కలిగిన ఇనుము, రాగి, జింక్ మరియు మరికొన్ని జీవులకు అవసరం. వాటిని 'ట్రేస్ మెటల్స్' అంటారు. మరోవైపు, సీసం, పాదరసం, కాద్మియం మరియు మరికొన్ని లోహాలు నిర్దిష్ట సాంద్రత కంటే ఎక్కువ ఉండినచో జీవులకు విషపూరితమైనవి.

35.2 హెవీ మెటల్స్ ద్వారా కాలుష్యం యొక్క మూలాలు

భారీ లోహాలు సహజ మార్గాల ద్వారా లేదా మానవ కార్యకలాపాల ద్వారా పర్యావరణంలోకి [ప్రవేశపెడతాయి. సహజ వనరులు: [ప్రకృతిలో అగ్నిపర్వత విస్ఫోటనాలు, శిలల వాతావరణం, నీటి చర్య కారణంగా నదులు, సరస్సులు మరియు మహాసముద్రాలలోకి చేరడం వంటి భౌగోళిక దృగ్విషయాల ద్వారా [టేస్ మెటల్స్ యొక్క అధిక స్థాయిలు సంభవించవచ్చు.

ఆంత్రోపోజెనిక్ సోర్సెస్: కింది జాబితా భారీ లోహాలు పర్యావరణంలోకి వచ్చే వివిధ మానవ కార్యకలాపాలను చూపుతుంది.

i) లోహాల ఖనిజాలను కరిగించడం లేదా ప్రాసెస్ చేయడం.

ii) మైనింగ్.

51

- iii) బొగ్గు, పెట్రోల్, కిరోసిన్ ఆయిల్ వంటి శిలాజ ఇంధనాలను కాల్చడం.
- iv) వ్యవసాయ వ్యర్థాలు, పారిశ్రామిక వ్యర్థాలను విడుదల చేయడం.
- V) గృహ వ్యర్థాలను విడుదల చేయడం.
- vi) ఆటో ఎగ్హాస్ట్ల్ నుండి విడుదల చేయడం.
- vii) భారీ లోహాల సమ్మేళనాలు (లవణాలు) కలిగిన పురుగుమందులను ఉపయోగించడం.

అనేక విషపూరిత అకర్బన మరియు కర్బన సమ్మేళనాలు మరియు భారీ లోహాలు నీటి ద్వారా మట్టిలో నిక్రిప్తం చేయబడతాయి మరియు ఖననం చేయబడతాయి. హ్యూమస్, మట్టిలో ఉండే సేంద్రీయ పదార్థం (ఇది నేలను పచ్చగా కనిపించేలా చేస్తుంది) హెవీ మెటల్ కాటయాన్లకు అధిక అనుబంధాన్ని కలిగి ఉంటుంది మరియు నేల గుండా వెళ్ళే నీటి నుండి వాటిని సంగ్రహిస్తుంది. పంటలు మరియు ఇతర మొక్కల మూలాలు ఈ సమ్మేళనాలను నీటితో పాటుగా ఎంచుకొని మొక్కలకు మరియు మొక్కలు జంతువులకు పంపుతాయి. నీటిలో, శోషించబడిన భారీ లోహాలతో కణాలు దిగువన స్థిరపడతాయి మరియు అవక్షేపాలు వాటిపై పేరుకుపోతాయి. కానీ జీవులు వీటిని తింటే, భారీ లోహాలు ఆహార వెబ్లోకి ట్రవేశిస్తాయి.

35.3 హెవీ మెటల్ టాక్సిసిటీ

ఇనుము, రాగి మరియు సీసం వంటి భారీ లోహాలు చాలా రకాలుగా ఉపయోగపడతాయి. మానవ జనాభా పెరుగుదల, పారిశ్రామికీకరణ, వాహనాల రాకపోకలు విపరీతమైన పెరుగుదల మరియు రసాయన ఎరువులు మరియు పురుగుమందుల వాడకంతో మన పర్యావరణం భారీ లోహాలతో కలుషితమైంది. భారీ లోహాలు నీటి వనరులలో మరియు కొన్నింటిలో భూగర్భ జలాల్లో కూడా ఉండవచ్చు.

హెవీ మెటల్ విషర్రుభావానికి ఉత్తమ ఉదాహరణ జపాన్లోని మత్స్యకార గ్రామమైన మినామాటాలో జరిగిన విషాద సంఘటన. కలుషితమైన మినమతా బే నుండి చేపలను తినడం ద్వారా పాదరసం కారణంగా గ్రామస్తులు మినమాట వ్యాధితో బాధపడుతున్నారు. 1932 నుండి 1968 వరకు కొనసాగిన చిస్సో కార్పొరేషన్ యాజమాన్యంలోని రసాయన కర్మాగారం నుండి పారిశ్రామిక వ్యర్థాలను బేలోకి పంపి, నీటిని కలుషితం చేసి, పాదరసం చేపలలో నిక్షిప్రమై పరోక్షంగా (పజలు తినేవారు. మన దేశంలో, పశ్చిమ బెంగాల్లోని చాలా మంది గ్రామస్తులు (తాగునీటి నుండి ఆర్సెనిక్ విషం కారణంగా పుంద్లు మరియు అల్సర్లలతో బాధపడుతున్నారు.

భారీ లోహాలు జీవ–అధోకరణం చెందని కారణంగా పర్యావరణం నుండి వేగంగా తొలగించబడవు. అందువల్ల, భారీ లోహాలు పర్యావరణంలో పేరుకుపోతాయి మరియు భారీ లోహ కాలుష్యం జీవులపై హానికరమైన ప్రభావాలను కలిగి ఉంటుంది. ఆహార గొలుసులో బయోఅక్యుములేట్* మరియు బయోమాగ్ని పై** చేసే కొన్ని లోహాలు, ఉ దాహరణకు, పాదరసం.

* బయోఅక్యుమ్యులేట్ జీవులు కొన్ని విషపదార్ధాలను తటస్థీకరించే సామర్థ్యాన్ని కలిగి ఉంటాయి, మరికొన్ని వాటి కణజాలాలలో బయోఅక్యుమ్యులేషన్ అని పిలువబడతాయి.

52

** కొన్ని విషపూరిత లోహాల బయోమాగ్నిఫై కాన్సర్టేషన్ క్రమంగా ఆహార గొలుసు ద్వారా వరుస ట్రోఫిక్ స్థాయిని పెంచుతుంది. ఇటువంటి బయోమాగ్నిఫికేషన్ ఆహారాన్ని వినియోగానికి అనువుగా చేస్తుంది మరియు తద్వారా అనారోగ్యానికి కారణమవుతుంది.

ఇంటెక్స్ ప్రశ్నలు 35.1

1. ఏవైనా రెండు విషపూరితమైన భారీ లోహాల పేర్లు చెప్పండి.

.....

2. భారీ లోహాన్ని నిర్వచించండి.

.....

3. హెవీ మెటల్ కాలుష్యం యొక్క మానవజన్య మూలాన్ని పేర్కొనండి.

.....

4. మినమటా వ్యాధికి కారణమయ్యే లోహం ఏది మరియు అది ఏ దేశంలో సంభవించింది?

35.4 Pb, Hg మరియు Cd కాలుష్యం యొక్క ప్రభావాలు:

అన్ని ట్రేస్ ఎలిమెంట్లు చాలా కాలం పాటు లేదా తగినంత అధిక సాంద్రతతో తీసుకుంటే కొన్ని విషపూరిత ప్రభావాలను కలిగి ఉంటాయి. మనం ఇప్పుడు కాలుష్యం మరియు విషపూరిత మూలాలను అధ్యయనం చేస్తాము మూడు భారీ లోహాల ప్రభావాలు – సీసం, పాదరసం మరియు కాడ్మియం.

సీసం: సీసం చాలా తీవ్రమైన కాలుష్య కారకం. 0.1% Pb బరువు రాళ్లు మరియు మట్టిలో భూమి యొక్క క్రస్ట్రోలో సంభవిస్తుంది. ఇది కొన్ని మొక్కలలో సహజంగా సంభవిస్తుంది.

అంత్రోపోజెనిక్ మూలాలు:

మానవ కార్యకలాపాలు పర్యావరణంలో సీసం పరిమాణాన్ని పెంచాయి. అటువంటి కొన్ని మానవజన్య మూలాలు:

- మైనింగ్, స్మెబ్జింగ్, మురుగు మరియు వ్యవసాయ బురద నుండి Pb కోసం మట్టి ఒక దంపింగ్ గ్రౌండ్ను ఏర్పరుస్తుంది;
- ii. వాహనాల ఎగ్జాస్ట్ల్ నుండి: వాహనాల అంతర్గత దహన యండ్రాల సామర్థ్యాన్ని మెరుగుపరచడానికి బెట్రా ఇథైల్ లెడ్ను పెట్రోల్తో కలుపుతారు. ఫ్యూయల్ ట్యాంక్ మరియు కార్బ్యురేట్ నుండి అవిరైన ఇంధనం లేదా మోపెడ్లు మరియు మోటారు బైక్ల నుండి, ఆటోమొబైల్ ఎగ్జాస్ట్ల్ ద్వారా Pb యొక్క సమ్మేళనాలను విడుదల చేస్తుంది మరియు అది దుమ్ముగా పేరుకుపోతుంది.

iii.పరిశ్రమల నుంచి సీసం విడుదలై దుమ్ముగా పేరుకుపోకుండా మట్టిలోకి చేరుతుంది. (Pb) సీసం పైపులు

మరియు సీసం నిల్వ ట్యాంకుల నుండి త్రాగడానికి వినియోగించే (మానవ వినియోగానికి సరిపోయే) నీటిలోకి వెళుతుంది. పైపు జాయింట్లు టంకంలో Pbని కలిగి ఉంటాయి, వీటిని నీటి ప్రవాహంతో పాటు తీసుకువెళ్లవచ్చు. iv. ఇది లెడ్ యాసిడ్ బ్యాటరీల నుండి విడుదలవుతుంది.

- v. రోద్లను గుర్తించడానికి ఉపయోగించే పసుపు రంగు లెడ్ క్రోమేట్ వంటి పెయింట్లు చెడిపోయి పర్యావరణంలోకి ప్రవేశిస్తాయి.
- vi.కుండల గ్లేజర్లు గ్లేజింగ్ కోసం సీసం సమ్మేళనాలను ఉపయోగిస్తారు. ఇది Pb కాలుష్యం యొక్క మూలాన్ని ఏర్పరుస్తుంది.

సీసం యొక్క విష ప్రభావాలు:

సీసం తీవ్రమైన విషపూరితం. సీసం యొక్క కొన్ని విషపూరిత ప్రభావాలు క్రింద చర్చించబడ్డాయి:

- i. మానవ శరీరంలోకి ప్రవేశించిన తర్వాత సీసం రక్తంలోకి చేరుతుంది మరియు ప్రసరణ ద్వారా మృదు కణజాలాలలోకి ప్రవేశిస్తుంది. సీసం అయితే కాల్షియం స్థానంలో చివరికి ఎముకలలో నిక్షిప్తం అవుతుంది.
- ii. పిల్లలలో మరియు కాల్షియం లోపంతో బాధపడుతున్న వ్యక్తులలో సీసం శోషణ ఎక్కువగా ఉంటుంది. ఇది బయోఅక్యుమ్యులేట్ మరియు చాలా సంవత్సరాలు మానవ శరీరంలో ఉంటుంది. వృద్ధాప్యం మరియు అనారోగ్యం సమయంలో, రక్తం బొనెటోబ్లడ్ నుండి వెనుకకు కదులుతుంది మరియు లీడిన్ బ్లడ్ స్థాయి పెరుగుతుంది మరియు విషపూరితం అవుతుంది: ఇది మెదడుకు చేరుకుంటుంది మరియు మెదడు దెబ్బతినడం, మూర్చ మరియు ప్రవర్తనా లోపాలను కలిగిస్తుంది.
- iii.సీసం హిమోగ్లోబిన్ ఏర్పడటానికి ఆటంకం కలిగిస్తుంది మరియు హిమోగ్లోబిన్ లోపం వల్ల రక్తహీనతకు కారణమవుతుంది. హిమోగ్లోబిన్ లేకపోవడం వల్ల మూత్రపిండాలు మరియు మెదడు దెబ్బతినవచ్చు.

iv.సీసం యొక్క తీవ్రమైన విషపూరితం ప్రాణాంతకం కావచ్చు.

మెర్యురీ

మెటాలిక్ పాదరసం సాపేక్షంగా జడమైనది మరియు విషపూరితం. పీల్చడం ద్వారా అది రక్తాన్ని మరియు వాటిని కేంద్ర నాడీ వ్యవస్థకు చేరుకుంటుంది మరియు తీవ్రమైన నష్టాన్ని కలిగిస్తుంది.

మూలాలు (occurance):

మెర్యురీ భూమి యొక్క క్రస్ట్ తో ఉంది. ఇది అగ్నిపర్వత వాయువులు మరియు మహాసముద్రాల నుండి బాష్పీభవనం నుండి పర్యావరణానికి కూడా చేరుకుంటుంది. పాదరసం మెటాలిక్ మెర్యురీ, అకర్బన ఉప్ప మరియు సేంద్రీయ మిథైల్ పాదరసం వలె ఉనికిలో ఉంది. వాయురహిత బాక్టీరియా చర్య ద్వారా మట్టికి కట్టుబడి ఉండే పాదరసం డైమిథైల్ పాదరసంగా మారుతుంది. శిలాజ ఇంధనం మరియు ఖనిజాలలో మెర్యురీ కూడా ఉంది. పాదరసం అస్థిరంగా ఉన్నందున మొక్కలు నేల నుండి పాదరసం తీసుకుంటాయి మరియు ట్రాన్ఫిరేషన్ సమయంలో పాదరసం అవిరిగా విడుదల చేస్తాయి.

అంత్రోపోజెనిక్ మూలాలు:

మెర్మురీ 20వ శతాబ్దానికి ముందే చాలా కాలం పాటు వాతావరణంలో ఉంది. ఇది క్రింది మార్గాల్లో పర్యావరణాన్ని చేరుకుంటుంది:

- ఖనిజాల నుండి బంగారం మరియు పాదరసం సంగ్రహిస్తున్నప్పుడు.
- శిలాజ ఇంధనాల దహనం పర్యావరణంలోకి పాదరసం ఆవిరిని విడుదల చేస్తుంది. థర్మల్ పవర్ ప్లాంట్లలో తక్కువ (గేడ్ బొగ్గను ఉపయోగించినట్లయితే భారతదేశంలోని బొగ్గ అధిక పాదరసం కలిగి ఉంటుంది, అధిక ఆవిరి బీడనం మరియు అధిక దహన ఉష్ణోగత ఉన్న పాదరసం వాతావరణంలోకి వెళ్లి ధూళి కణాలుగా ఘనీభవిస్తుంది.
- కాగితం, ప్లాస్టిక్, కాస్టిక్ సోడా మరియు క్లోరిన్ పరిశ్రమల నుండి వచ్చే వ్యర్థాలు పర్యావరణంలోకి పాదరసం విడుదల చేస్తాయి.
- పాదరసం సమ్మేళనాలు, వాటి విషపూరితం, శిలీంద్రాలు లేదా పురుగుమందులుగా ఉపయోగించబడతాయి మరియు ఫలితంగా, అవి పర్యావరణంలోకి ప్రవేశించగలవు.
- ఎలక్ట్రికల్ ఉపకరణాలు: మెర్యురీ విద్యుత్ యొక్క అద్భుతమైన కండక్టర్, కాబట్టి ఇది ఎలక్ట్రిక్ స్విచ్లు, దీపాలు మరియు బ్యాటరీలలో ఉపయోగించబడుతుంది. ఇటువంటి ఉపకరణాలు పాదరసం అవిరి విడుదలకు సంభావ్య మూలం.

మెర్యురీ యొక్క విష ప్రభావాలు:

జపాన్లోని ప్రజలు పాదరసం విషపూరిత చేపలను తినడం వల్ల మినామాటా అనే వ్యాధికి గురయ్యారు.

మినామాటా వ్యాధి:

జపాస్లో 1953లో హెచ్జి పాయిజనింగ్తో చనిపోయిన చేపలను తినడం వల్ల పాదరసం విషం సంభవించింది. పాదరసం ప్రసరించే నీరుగా చేరిన నీటిని కలుషితం చేసింది. వినైల్ క్లోరైడ్ (ప్లాస్టిక్ పదార్థం) ఫ్యాక్టరీ. మినమతాబే తీర ప్రాంతాల్లో నివసిస్తున్న మత్స్యకారులు చనిపోయిన చేపలను తిన్నారు. వారు మినామాటా వ్యాధితో బాధపడ్డారు, దీని లక్షణాలు బలహీనమైన కండరాలు, బలహీనమైన దృష్టి, మెంటల్ రిటార్డేషన్,

పక్షవాతం మరియు మరణం.

పాదరసం మింగినప్పుడు విషపూరితం కాదు, అయితే దాని అస్థిర రూపంలో పీల్చినట్లయితే అది రక్తు్రవాహం ద్వారా మెదడులోకి ప్రవేశిస్తుంది, ఇది నాడీ వ్యవస్థకు హాని కలిగిస్తుంది. అందువల్ల పాదరసం బాగా వెంటిలేషన్ ఉన్న గదిలో హ్యాండిల్స్ చేయాలి మరియు చిమ్మితే శుభ్రం చేయాలి. Hg అయాన్లు సల్ఫర్తో అనుబంధాన్ని కలిగి ఉంటాయి. మరియు ప్రొటీన్ల అమైనో ఆమ్లాన్ని కలిగి ఉన్న సల్ఫర్కు జోడించడం ద్వారా హాని కలిగిస్తాయి. Hg అయాన్లు హిమోగ్లోబిన్ మరియు ఇతర రక్త ప్రోటీన్లతో ముఖ్యంగా సల్ఫ్రైడ్రెల్ సమూహాలను కలిగి ఉంటాయి.

మానవులకు అత్యంత విషపూరితమైనది ఆర్గానో –మెర్యూరీ సమ్మేళనాలు ముఖ్యంగా మిథైల్ మెర్యూరీ కొవ్వ

కణజాలాలలో కరిగిపోతుంది మరియు బయో–అక్యుమ్యూలేట్ మరియు బయో–మాగ్నిఫైస్. సూక్ష్మజీవులు అధిక స్థాయి అకర్బన పాదరసం డైమిథైల్ మెర్మ్యురీ వంటి సేంద్రీయ ఉత్పన్నాలుగా మారుస్తాయి. కింది కారణాల వల్ల మిథైల్మెర్యూరీ సమ్మేళనాలు చాలా విషపూరితమైనవి:

• ఈ సమ్మేళనాలు మెదడుకు చేరతాయి మరియు నరాల (పేరణల ప్రసారానికి ఆటంకం కలిగిస్తాయి.

- ఈ సమ్మేళనాలు గర్భిణీ తల్లుల పిండం యొక్క కేంద్ర నాడీ వ్యవస్థకు శాశ్వత నష్టం కలిగిస్తాయి.
- ఈ సమ్మేళనాలు కిడ్నీ నుండి నీటిని కోల్పోయేలా చేస్తాయి మరియు చివరికి మరణానికి కారణమవుతాయి.

కాడ్మియం:

కాడ్మియం అత్యంత విషపూరిత లోహం.

మూలాలు (occurance):

కాడ్మియం యొక్క సహజ వనరులు అగ్నిపర్వత కార్యకలాపాలు, సముద్రాలు మరియు అదవుల మంటలు (forest fires).

అంత్రోపోజెనిక్ మూలాలు:

మానవ కార్యకలాపాలు సహజ వనరుల కంటే వాతావరణానికి ఎక్కువ కాడ్మియంను జోడిస్తాయి. బౌగ్గ తవ్వకం, నాన్–ఫెర్రస్ మెటల్ మైనింగ్, రిఫైనరీలు, బౌగ్గ దహనం, ఇనుము మరియు ఉక్కు పరిశ్రమలు మరియు ఫాస్ఫేట్ ఎరువులు కాడ్మియం యొక్క ప్రధాన వనరులు. సిగరెట్ పొగతో విడుదలైనప్పుడు కాడ్మియం కలిగిన పొగాకు గాలిలో చక్కగా చెదరగొట్టబడుతుంది. కాడ్మియం రసాయనికంగా జింక్తతో సమానంగా ఉంటుంది. ఇది జింక్ ఖనిజాలతో కూడా సంభవిస్తుంది.

కాద్మియం యొక్క టాక్సిక్ ఎఫెక్ట్ర్:

కాష్మియం ఒక సంచిత విషం. ఇది చాలా కాలం పాటు శరీరంలో ఉంచబడుతుంది మరియు కారణమవుతుంది.

- i. అధిక రక్తపోటు
- ii. గుండె జబ్బులు
- iii. మూత్రపిందాల నష్టం
- iv. ఎర్ర రక్త కణాల నాశనం
- V. మైటోకాన్రియల్ కణాల అసాధారణ పనితీరుకు కారణమవుతుంది.

కాడ్మియం రసాయనికంగా జింక్ను పోలి ఉంటుంది Ca+²మరియు Cd+² ఒకే ఛార్ట్ ను పంచుకుంటుంది మరియు ఒకే విధమైన సైజర్ను కలిగి ఉంటుంది. ఇది ఎంజైమ్లలో జింక్ను భర్తీ చేస్తుంది. మరియు తద్వారా వాటి ఉత్త్యేరక చర్యను నాశనం చేస్తుంది. జపాన్లో, ప్రజలకు ఎముకల వ్యాధి "ఇటాయిటై" వచ్చింది, ఇక్కడ ఎముకల Ca+² స్థానంలో Cd+² వచ్చింది.

35.5 హెవీ మెటల్ టాక్సిసిటీ నివారణ చర్యలు

- లోహాల దుష్ట్రభావాల గురించి మరియు వాటి విషపూరితం గురించి ప్రజలకు అవగాహన కల్పించడం మరియు నివారణ చర్యలు తీసుకోవాలని కోరడం.
- పారిశ్రామిక వ్యర్థాలను సక్రమంగా పారవేసేందుకు పరిశ్రమలు చర్యలు తీసుకోవాలని కోరారు. మురుగునీటిని తొలగించేందుకు ప్రత్యేక పరికరాలు రూపొందించారు.
- సరైన పరికరాలను అమర్చని మరియు వ్యర్థాలను నదులలో లేదా మట్టిలో వేయని పరిశ్రమలపై జరిమానా చర్యలు తీసుకోవాలని ప్రభుత్వం నిర్ణయించింది.
- లెడ్ పెట్రోల్ వాడకాన్ని క్రమంగా తగ్గించే ప్రయత్నాలు జరుగుతున్నాయి. కొత్తగా తయారు చేయబడిన కార్లు లెడ్–ఫ్రీ పెట్రోల్ను ఉపయోగించేలా రూపొందించబడ్డాయి. పాత కార్లలో సీసం రహిత పెట్రోల్ను ఉపయోగించడం కోసం ఉత్ప్రేరక కన్వర్టర్లు రూపొందించబడ్డాయి.

35.6 లోహ కాలుష్యం తొలగింపు చర్యలు

లోహాలు చాలా తక్కువ గాధతలో ఉన్నందున లోహ కాలుష్యాలను తొలగించడం చాలా కష్టం; అయినప్పటికీ, లోహాన్ని తొలగించడానికి వ్యవస్థలను రూపొందించడానికి రెండు మార్గాలు ఉన్నాయి.

i. ఒక మెటల్ తొలగింపు కోసం డిజైన్ ప్రక్రియ లేదా

- ii. అనేక లోహాలను తొలగించే ఒక ప్రక్రియను రూపొందించండి
- భారీ లోహాల ద్వారా కలుషితమైన నదులు మరియు అవక్షేపాలకు; కిందివి సూచించబద్దాయి.
- లోహం యొక్క కలుషితమైన అవక్షేపాలపై కలుషితం కాని శుభ్రమైన నేల పొరలను ఉంచండి
- అవక్షేపాలను కలిగి ఉండటం నదుల ద్వారా కొట్టుకుపోకపోవచ్చు.
- CaCO3తో చికిత్స చేయడం, ఇది అవక్షేపం యొక్క pHని పెంచుతుంది మరియు భారీ లోహాలను స్థిరపరుస్తుంది.
- లైమ్ స్టోన్, జిప్సం, ఐరన్ సల్ఫేట్ మరియు యాక్టివేటెడ్ చార్కోల్ను డిటాక్సిఫైయింగ్గా ఉపయోగించవచ్చు.
- నీటి వనరుల నుండి పాదరసం తీసుకునే పిస్టియా మరియు హైడ్రిల్లా వంటి నీటి మొక్కలను ఉపయోగించడం
- మరియు పాదరసం-కాలుష్యాన్ని తగ్గించడంలో సహాయం.

ఇంటెక్న్ ప్రశ్నలు 35.2

1. మినామాటా వ్యాధికి కారణమేమిటి?

-

2. సీసం కాలుష్యం యొక్క మూడు మూలాలను జాబితా చేయండి?

.....

3. మానవులకు చాలా విషపూరితమైన పాదరసం ఉత్పన్నానికి పేరు పెట్టండి?

.....

4. పాదరసం కాలుష్యాన్ని తగ్గించగల రెండు వాటర్ ప్రాంట్లను పేర్కొనండి?

35.7 రేడియోధార్మిక కాలుష్యం

రేడియోధార్మిక కాలుష్యం అనేది రేడియోధార్మిక మూలకాల ద్వారా పర్యావరణాన్ని కలుషితం చేస్తుంది, ఇది అయనీకరణం ద్వారా విడుదలయ్యే హానికరమైన రేడియేషన్లను కలిగి ఉంటుంది.

35.7.1 రేడియోధార్మిక కాలుష్యం యొక్క మూలాలు రేడియేషన్ యొక్క సహజ వనరులు

- i) రేడియోధార్మిక కాలుష్యానికి ప్రధాన సహజ వనరు యురేనియం తవ్వకం. యురేనియం మరియు థోరియం వంటి రేడియో ఐసోటోప్లు రాళ్లలో ఉంటాయి మరియు మైనింగ్ చేస్తున్నప్పుడు అవి విచ్చిన్నం చెందుతాయి, ఇవి హానికరమైన రేడియేషన్లను విడుదల చేస్తాయి.
- ii) కాస్మిక్ కిరణాలు మన గెలాక్సీలోని నక్షత్రాల నుండి ఉద్భవించే అధిక శక్తి అయనీకరణ విద్యుదయస్కాంత వికిరణాలు. కాస్మిక్ కిరణాలు అన్ని జీవులలో కార్బన్−14 ఉత్పత్తికి కారణమవుతాయి.
- iii) సహజంగా లభించే రేడియో ఐసోటోప్లెరైన రాదాన్–222 మట్టిలో తక్కువ పరిమాణంలో ఉంటాయి మరియు రేడియోధార్మిక రేడియేషన్ల యొక్క ఇతర మూలాలు.
- iv) పొటాషియం-40 మట్టిలోని అన్ని పొటాషియం కలిగిన వ్యవస్థలకు రేడియోధార్మికతను అందిస్తుంది. అటువంటి నేలపై పండించే పంటలలో కార్బన్ -14 మరియు పొటాషియం వంటి రేడియోధార్మిక మూలకాలు ఉంటాయి. 40. రేడియోధార్మిక ఖనిజాలు కలిగిన నేలలు మరియు రాళ్ల ద్వారా నీరు ప్రవహించినప్పుడు వివిధ రేడియో న్యూక్రైడ్లతో నీరు కలుషితమవుతుంది. రేడియేషన్ స్థాయి చాలా తక్కువగా ఉన్నందున అరుదుగా హాని కలిగించే సహజ రేడియేషన్ల వాతావరణంలో మనం జీవిస్తున్నాము. ప్రతిచోటా ఉండే ఈ చిన్న స్థాయి రేడియోధార్మిక రేడియేషన్ను బ్యాక్క్గొండ్ రేడియేషన్ అంటారు.

రేడియేషన్ యొక్క ఆంత్రోపోజెనిక్ సోర్సెస్

కింది మానవ కార్యకలాపాలు రేడియోధార్మిక కాలుష్యం యొక్క మూలాన్ని పెంచుతాయి:

- i) దయాగ్నస్టిక్ మెడికల్ అప్లికేషన్స్: రేడియేషన్స్ దయాగ్నస్టిక్ మరియు థెరఫ్యూటిక్ అప్లికేషన్స్ కోసం ఉపయోగించబడతాయి. సాధారణ రేడియాలజీ మరియు CT స్కాన్లో X- కిరణాలు ఉపయోగించబడతాయి. గామా కిరణాలను క్యాన్సర్ చికిత్సలో ఉపయోగిస్తారు. ఈ ప్రక్రియలన్నింటిలో మనం వివిధ మోతాదుల రేడియేషన్లకు గురవుతాము.
- ii) అణు పరీక్షలు: రేడియోధార్మిక ధూళి (దీనినే రేడియోధార్మిక పతనం అని కూడా పిలుస్తారు) భూమి యొక్క
ఉపరితలం నుండి 6 నుండి 7 కి.మీ ఎత్తులో గాలిలో సస్పెండ్ చేయబడి, ఎక్కువసేపు చెదరగాట్టబడినందున అణు అయుధాల పరీక్ష వాతావరణానికి భారీ మొత్తంలో రేడియో ఐసోటోప్లను జోడిస్తుంది. పరీక్షా స్థలం నుండి గాలుల ద్వారా దూరాలు. తరువాత వర్నాల ద్వారా ఈ ఐసోటోప్లు మట్టిలో స్థిరపడతాయి మరియు ఆహార గొలుసులోకి ప్రవేశిస్తాయి మరియు చివరకు జీవులలో నిక్షిప్తం చేసి ఆరోగ్యానికి హాని కలిగిస్తాయి. భారతదేశం 1974లో పోఖరన్ సమీపంలోని థార్ ఎడారిలో 107 మీటర్ల లోతులో భూగర్భ సొరంగంలో తన అణు పరికరాన్ని (12 కిలోల టై నైట్రో టోల్యూన్కు సమానం) పేల్చింది. పరిసరాల్లోకి రేడియోధార్మికత విడుదల కాలేదని చెప్పబడింది. మరల మే, 1998లో భారతదేశం రేడియోధార్మికత నుండి బయట పడకుండా అణు పరీక్షలను నిర్వహించింది.

- iii) అణు రియాక్టర్ల: అణు రియాక్టర్లు మరియు ఇతర అణు సౌకర్యాలు సాధారణంగా పనిచేస్తున్నప్పుడు కూడా రేడియేషన్లు లీక్ కావచ్చు. అత్యుత్తమ డిజైన్, సరైన నిర్వహణ మరియు సాంకేతికతలతో కూడా ఇది తరచుగా భయపడుతుంది; కొంత రేడియోధార్మికత సాధారణంగా గాలి మరియు నీటిలోకి విడుదల చేయబడుతుంది.
- iv) అణు పేలుళ్లు: అణు విస్ఫోటనాలు రేడియేషన్ ప్రమాదానికి తీవ్రమైన మూలం. నాగసాకి మరియు హిరోషిమాలలో అణు విస్ఫోటనం యొక్క ప్రభావాలు ఇప్పటికీ మరచిపోలేదు.
- v) అణు వ్యర్థాలు: అణు రియాక్టర్లో యురేనియం-235 కేంద్రకాలు విడిపోయినప్పుడు, అవి విచ్ఛిత్తి ఉత్పత్తులుగా విడిపోతాయి.

రేడియోధార్మిక పరమాణువుల సంఖ్య రెట్టింపు కావడం వల్ల ఒక యురేనియం అణువు రెండు రేడియోధార్మిక ఉత్పత్తులుగా విడిపోతుంది కాబట్టి అవి కూడా అధిక రేడియోధార్మికతను కలిగి ఉంటాయి. న్యూక్లియర్ రియాక్టర్ వ్యర్థాలు వేల సంవత్సరాలపాటు ప్రమాదకరమైన రేడియేషన్లను విడుదల చేస్తాయి. ఈ రేడియో న్యూక్లైడ్లను నాశనం చేయడం సాధ్యం కాదు కాబట్టి, మానవులకు కనీసం హాని జరగకుండా ఉండటానికి వాటిని ఈ భూమిపై ఎక్కడో నిల్వ చేయాలి.

ఫ్లాటోనియం-239 మరొక అణు వ్యర్థం. యురేనియం విచ్ఛిత్తి సమయంలో ఫ్లాటోనియం-239 ఐసోటోప్ ఉప ఉత్పత్తిగా ఉత్పత్తి అవుతుంది. ఇది ఆల్ఫా పార్టికల్ ఎమిటర్ మరియు 24000 సంవత్సరాల సుదీర్ఘ అర్థజీవితాన్ని (Half Life) కలిగి ఉంటుంది. ఫ్లాటోనియం భూమిపై సహజంగా ఏర్పడదు. ఈ మూలకం అణు రియాక్టర్లలో లేదా అణు ఆయుధాల కార్యక్రమంలో ఉత్పత్తి చేయబడుతుంది. ఈ రోజు ఉత్పత్తి చేయబడిన ఫ్లాటోనియం వేల సంవత్సరాల పాటు భవిష్యత్తు తరాల కోసం చూసుకోవాలి.

రాడాన్ రాళ్లు మరియు సిల్స్ ద్వారా వాతావరణంలోకి వ్యాపిస్తుంది. రాడాన్ వాతావరణంలోకి చేరిన తర్వాత దానిని పీల్చుకోవచ్చు. సీసంగా రూపాంతరం చెందడం చాలా ముఖ్యమైనది ఎందుకంటే ఘన రేడియోధార్మిక కణాలు ఊపిరితిత్తులలో చిక్కుకొని తీవ్రంగా హాని కలిగిస్తాయి.

59

Fig 35.1: Nuclear power plant in Rajasthan

అణు విద్యుత్ ప్లాంట్లలో (పమాదాలు

1986లో USSRలోని "చెర్నోబిల్ న్యూక్లియర్ పవర్ ప్లాంట్"లో మరియు 1979లో USAలోని "త్రీ మైల్ ఐలాండ్ పవర్ ప్లాంట్"లో ఇటువంటి ప్రమాదాలు జరిగాయి. 'త్రీ మైల్ ఐలాండ్' అణు రియాక్టర్ నుండి లీకేజీ చాలా తక్కువగా ఉందని పేర్కొన్నారు. కార్మికులు లేదా వ్యక్తులకు తక్షణ గాయాలు లేవు కానీ చెర్నోబిల్ వద్ద లీకేజీ చాలా ఎక్కువగా ఉంది, దీని వలన చాలా మంది కార్మికులు మరణించారు. మరియు రేడియేషన్ ఐరోపా అంతటా విస్తరించిన పెద్ద ప్రాంతాలలో వ్యాపించింది.

ఇంటెక్న్ ప్రశ్నలు 35.3

1. అయోనైజింగ్ రేడియేషన్స్ అంటే ఏమిటి?

.....

2. ప్రకృతిలో రేడియోధార్మిక కాలుష్యం యొక్క రెండు మూలాలలో దేనినైనా పేర్కొనండి?

.....

3. రేడియోధార్మిక కాలుష్యం యొక్క మూడు మానవ నిర్మిత లేదా మానవజన్య మూలాలను పేర్కొనండి?

.....

4. అధిక రేడియోధార్మిక లీకేజీకి దారితీసిన రెండు ప్రమాదాలు గతంలో ఏవి?

.....

5. న్యూటాన్ యురేనియం-235ని తాకినప్పుడు ఏమి జరుగుతుంది?

.....

35.7.2 మానవులపై రేడియేషన్ ప్రభావాలు

ఏ రకమైన అయోనైజింగ్ రేడియేషన్కు (α మరియు β కణాలు, γ–కిరణాలు మరియు X– కిరణాలు) గురికావడం హానికరం మరియు ప్రాణాంతకం కూడా కావచ్చు. రెండు రకాల ప్రభావాలు:

- i) జన్యుపరమైన రుగ్మత: ఇందులో జన్యువులు మరియు (కోమోజోములు మార్పు చెందుతాయి. దీని ప్రభావం ఆఫ్ స్పింగ్లలో (పిల్లలు లేదా గ్రాండ్ పిల్లలు) వైకల్యాలుగా కనిపించవచ్చు. జన్యు పదార్థంలో మార్పులు లేదా విరామాలు, అంటే DNA (డియోక్సిరిబో న్యూక్లియికాసిడ్) జన్యు సమాచారాన్ని కలిగి ఉన్న అణువును మ్యుటేషన్ అంటారు.
- ii)జన్యు రహిత రుగ్మత: జన్యు రహిత ప్రభావాలలో, పుట్టుక లోపాలు, కాలిన గాయాలు, కొన్ని రకాల లుకేమియా, గర్భసావాలు, కణతులు, ఒకటి లేదా అంతకంటే ఎక్కువ అవయవాల క్యాన్సర్ మరియు సంతానోత్పత్తి సమస్యల రూపంలో హాని వెంటనే కనిపిస్తుంది.

Fig35.2: Effect of radiation on skin

Type of radiation	Effect on the body
α-particles	Generally they cannot penetrate the skin. But if their sources are inside the body, they can cause damage to bones or lungs.
β-particles	Can penetrate the skin but cannot damage the tissues. They can cause damage to skin and eyes (cataract)
γ-radiation	Can easily penetrate the body and pass through it. They cause damage to cell structure.
X-rays	Can travel very far and pass though the body tissues except bones. Theycan cause damage to the cells.

Table 35.1: Effects of radioactive radiation on living beings

35.7.3 నివారణ చర్యలు

సహజ మరియు కృతిమ రేడియేషన్ల వల్ల కలిగే ప్రభావాలను తగ్గించదానికి క్రింది నివారణ చర్యలు తీసుకోవచ్చు:

- వాతావరణంలో అణు విస్ఫోటనాలు జరగకూడదు.
- న్యూక్లియర్ రియాక్టర్లలో, క్లోజ్డ్ సైకిల్ కూలెంట్ సిస్టమ్న్ ఉపయోగించుకోవచ్చు, తద్వారా శీతలకరణి ద్వారా రేడియేషన్ బీకేజీ జరగదు.
- అణు వ్యర్థాలను ఎల్లప్పుదూ రెండు గోడల ట్యాంకుల్లో సీలు చేయారి, తద్వారా రీకేజీలు జరగవు. రియాక్టర్లలో విచ్ఛిత్తి సమయంలో ఉత్పత్తి చేయబడిన ఉపయోగకరమైన ఐసోటోప్లను రీప్రిసెసింగ్ ప్లాంట్లలో రీసైకిల్ చేయవచ్చు. భౌగోళికంగా స్థిరంగా ఉన్న భూగర్భ గనులలో వ్యర్థాలకు శాశ్వత నిల్వ స్థలాన్ని ఏర్పాటు చేయారి, సహజ యురేనియం గనిలో ఉన్న రేడియోధార్మికత స్థాయికి వ్యర్థాలను తగ్గించే వరకు ఈ వ్యర్థాలను నిల్వ ఉంచవచ్చని సూచించబడింది.
- రేడియో ఐసోటోపుల ఉత్పత్తి మరియు వినియోగం కనిష్టంగా మరియు ప్రతి ఆవశ్యక వినియోగానికి మాత్రమే ఉండాలి.
- రేడియో కాలుష్య కారకాల ఉద్దారాలను పరిమితం చేయడానికి అణు సంస్థాపనల సంఖ్యను తగ్గించాలి.
- విచ్చిత్తి ప్రతిచర్యలను తగ్గించాలి.
- న్యూక్లియర్ గనులలో, వెట్ డ్రిల్లింగ్ను ఉపయోగించవచ్చు మరియు రేడియేషన్ లీకేజ్ కోసం టైలింగ్లను సరిగ్గా సీలు చేసి రక్షించవచ్చు.
- రేడియో న్యూక్హైడ్లతో కలుషితమైన పారిశ్రామిక వ్యర్థాలను ప్రత్యేకంగా నిర్మించిన ట్యాంకుల్లో జాగ్రత్తగా

పారవేయాలి.

- రేడియోధార్మిక ఉద్దారాలు సాధ్యమయ్యే పని ప్రదేశాలలో అధిక పొగ గొట్టాలు మరియు మంచి వెంటిలేషన్ వ్యవస్థ ఉండాలి.
- భూగర్భం నుండి రాడాన్ లీకేజీ ప్రమాదం ఉన్న ప్రాంతాల్లో. రాడాన్ సాంద్రతలు పర్యవేక్షించబడతాయి మరియు
 భవనాలు మరియు గృహాలలో రక్షణ చర్యలు వ్యవస్థాపించబడతాయి.

ఇంటెక్న్ ప్రశ్నలు 35.4

1) రేడియేషన్ యొక్క రెండు ప్రభావాలు ఏమిటి?

2) రేడియోధార్మిక వ్యర్థ పదార్థాల నిర్వహణ ఎలా చేయాలి?
3) టైలింగ్స్ నుండి ఉద్భవించే రేడియేషన్ నుండి మనల్ని మనం ఎలా రక్షించుకోవచ్చు?
4) అణు వ్యవస్థాపనల కార్మికులకు మోతాదు పరిమితి ఎంత నిర్ణయించబడింది?

(What we have learnt) మనం ఏమి నేర్చుకున్నాం?

- భూమి యొక్క క్రస్ట్ భారీ లోహాల జాడులతో ఏర్పడతాయి. హెవీ మెటల్ సాంద్రత 5 gm cm⁻³ కంటే ఎక్కువగా ఉంటుంది.
- ఒక ట్రేస్ మెటల్ భూమి యొక్క క్రస్ట్ 1000 ppm లేదా అంతకంటే తక్కువ పరిమాణంలో ఏర్పడుతుంది.
- ప్రకృతిలో, అగ్నిపర్వత కార్యకలాపాలు, రాళ్ల వాతావరణం, గాలి, నీరు మొదలైన సహజ దృగ్విషయాల ద్వారా భారీ లోహాలు మట్టిలో పేరుకుపోతాయి.
- మైనింగ్, కరిగించడం, శిలాజ ఇంధనాన్ని కాల్చడం, వ్యవసాయ, పారిశ్రామిక మరియు గృహ వ్యర్థాలను విడుదల చేయడం, ఆటో ఎగ్జాస్ట్ర్ మొదలైనవి లోహ కాలుష్యానికి సంబంధించిన మానవజన్య మూలాలు.
- భారీ లోహాలు నేల మరియు నీటి నుండి పర్యావరణ వ్యవస్థను చేరుకుంటాయి మరియు ఆహార గౌలుసు ద్వారా ఇతర జీవులలోకి ప్రవేశిస్తాయి.

- భారీ లోహాలు నిర్విషీకరణ లేదా బయోడిగ్రేడెడ్ కానందున పర్యావరణం నుండి వేగంగా తొలగించబడవు.
- పరమాణు స్థాయిలో, లోహాలు ఎంజైమ్లెయొక్క సరియైన పనితీరును ఎంజైమ్ యొక్క S-H సమూహానికి జోడించడం ద్వారా లేదా వాటిలో ఆకృతీకరణ మార్పులను కలిగించడం ద్వారా విషపూరితం అవుతాయి. ఒక హెవీ మెటల్ ఒక ముఖ్యమైన అయాన్ను స్థానుభంశం చేయవచ్చు.
- Pb అనునది పరిశ్రమల నుండి లేదా Pb పైపులు లేదా లెడ్ పెట్రోల్ నుండి విడుదల అవుతుంది. ఇది నాడీ సంబంధిత రుగ్మతలకు కారణమవుతుంది.
- Hg అనునది ప్లాస్టిక్, కాగితం, క్లోరిస్ పరిశ్రమల నుండి పర్యావరణంలోకి వస్తుంది. మిథైల్మెర్కురీ: మానవులకు ముఖ్యంగా ప్రమాదకరమైనది, వారు ఆహార గొలుసుల ద్వారా పొందవచ్చు. ఇది నరాలు దెబ్బతినదానికి మరియు మూత్రపిండాల రుగ్మతలకు కారణమవుతుంది. జపాన్లో Hg విషపూరితం మినామాటా వ్యాధికి కారణమైంది.
- కాడ్మియం విషపూరితమైనది. ఇది బౌగ్గ తవ్వకం, బౌగ్గ దహనం, చెత్తను కాల్చడం, ఎరువులు మొదలైన వాటి ద్వారా పర్యావరణంలోకి ప్రవేశిస్తుంది. Cd రక్తపోటును కలిగిస్తుంది. జపాన్లో Cd వ్యాధిగ్రస్తులైన ఇటాయ్– ఇటెకి కారణమైంది.
- పారిశ్రామిక వ్యర్థాలను సక్రమంగా పారవేయడం, లెడెడ్ పెట్రోల్ను ఉపయోగించడం మరియు లోహాల విషపూరితం గురించి ప్రజలకు అవగాహన కల్పించడం ద్వారా హెవీ మెటల్ టాక్సిసిటీని నిరోధించవచ్చు. మట్టిని శుభ్రపరిచే కలుషితమైన అవక్షేపాలను కప్పడం ద్వారా మ్యూపర్ను తీసుకునే జల మొక్కలను ఉపయోగించడం ద్వారా ఇప్పటికే పేరుకుపోయిన లోహాలను తొలగించవచ్చు.
- సహజ వనరులు మరియు మానవ నిర్మిత వనరుల ద్వారా అణు రేడియేషన్లు వాతావరణంలో విడుదలవుతాయి.
- సహజ వనరుల వల్ల వచ్చే రేడియేషన్లు యురేనియం మరియు ఇతర రేడియోధార్మిక మూలకాల కారణంగా ఏర్పడతాయి, ఇవి ప్రకృతిలో మరియు విచ్ఛేదనంపై ఇతర రేడియోధార్మిక ఐస్టోటోప్లను ఉత్పత్తి చేస్తాయి. వాటిలో ప్రముఖమైనది రాడాన్-222 వాయువు.
- రేడియేషన్లు బహిర్గతం అయినప్పుడు మానవ ఆరోగ్యంపై తేలికపాటి నుండి చాలా తీవ్రమైన ప్రభావాలను
 కలిగిస్తాయి మరియు మరణానికి కూడా దారితీయవచ్చు. కొన్ని దుష్పలితాలు భవిష్యత్తు తరాలకు అందుతూనే ఉంటాయి.
- రేడియేషన్ లీకేజీని తగ్గించడానికి వివిధ దశలు సూచించబడ్డాయి.

Terminal exercise:

- పర్యావరణంలోకి భారీ లోహాలను విడుదల చేసే ఐదు మానవ కార్యకలాపాలను జాబితా చేయండి.
- 2) భారీ లోహాలు పర్యావరణ వ్యవస్థను ఎలా చేరుకుంటాయి?

3) భారీ లోహం విషపూరితంగా మారే పరమాణు, యండ్రాంగాన్ని వివరించండి.

- 4) వాతావరణంలో కాడ్మియం ఎలా పేరుకుపోతుంది? ఇది మానవ శరీరంపై ఎలాంటి ప్రభావం చూపుతుంది?
- 5) సీసం కాలుష్యం యొక్క ఐదు మూలాలను జాబితా చేయండి. దాని దుష్పభావాలలో రెండు పేర్కొనండి.
- 6) పాదరసం కాలుష్యం వల్ల కలిగే రెండు విష ప్రభావాలను పేర్కొనండి.
- 7) మినామాటా వ్యాధిపై ఒక గమనిక రాయండి.
- 8) కాస్మిక్ కిరణాలు రేడియోధార్మిక కాలుష్య కారకంగా పనిచేస్తాయా?
- 9) ఏ రకమైన రేడియేషన్లు మానవ ఆరోగ్యానికి హాని కలిగిస్తాయి?
- 10) 'బ్యాక్ గ్రౌండ్ రేడియేషన్' అనే పదాన్ని నిర్వచించండి?
- 11) రేడియేషన్ కాలుష్యం యొక్క వివిధ మానవ నిర్మిత వనరులు ఏమిటి?

ANSWERS:

35.1

- 1. Cd, Hg మరియు Pb నుండి ఏదైనా రెండు
- 2. ఒక భారీ ఖనిజ సాంద్రత 5gcm-3 కంటే ఎక్కువ.
- 3. మైనింగ్, ఆటో ఎగ్జాస్ట్, పేపర్, ప్లాస్టిక్, పెయింట్ ఫ్యాక్టరీల నుండి ఎవరైనా.
- 4. మెర్యూరీ, జపాన్

35.2

- 1. Hg 2. రిఫెర్బోసెక్షన్
- 35.2 3. మిథైల్మెర్యురీ 4. పిస్టియా, హైడిల్లా

35.3

- ఇవి చిన్న తరంగదైర్ఘం లేదా చార్జ్ పార్టికల్స్ (వంటి మరియు కణాలు) యొక్క విద్యుదయస్కాంత వికిరణాలు, ఇవి అణువులు లేదా అణువుల అయనీకరణకు కారణమవుతాయి.
- ఖనిజాల వాతావరణం, బాహ్య అంతరిక్షం నుండి వచ్చే కాస్మిక్ కిరణాలు, ప్రకృతిలో సంభవించే రేడియోధార్మిక మూలకాలు. (ఎవరైనా)
- 3. అణు వ్యర్థాలు, అణు రియాక్టర్లు, అణు ప్రమాదాలు.
- 4. 1979లో మిడిల్ టౌన్ (U.S.A)లో మరియు 1986లో చెర్నోబిల్ న్యూక్లియర్ పవర్ ప్లాంట్ (U.S.S.R)లో 'త్రీ మైల్ ఐలాండ్' ప్రమాదం.
- 5. యురేమియం–235 మూడు న్యూటాన్లు మరియు చాలా శక్తి ఉత్పత్తితో రెండు విచ్ఛిత్తి ఉత్పత్తులుగా విడిపోతుంది.

స్లిప్ట్ ఉత్పత్తులు కూడా రేడియోధార్మికత కలిగి ఉంటాయి. దీని చర్యను అణు విచ్చిత్తి చర్య అంటారు.

35.4

- 1. జన్యు మరియు జన్యు రహిత రుగ్మతలు
- 2. రేడియోధార్మిక వ్యర్థాలను సరిగ్గా పారవేయాలి మరియు డబుల్ గోడల ట్యాంకులలో జాగ్రత్తగా నిల్వ చేయాలి, ఈ వ్యర్థాలను రేడియోధార్మికత యొక్క సహజ స్థాయికి వచ్చే వరకు నిల్వ చేయాలి.
- 3. విభాగం 36.5 చూడండి.
- 4. కార్మికులకు 30mSv మోతాదు పరిమితి నిర్ణయించబడింది.

36. 🗛 ధ్వని మరియు నేల కాలుష్యం

36.1 ధ్వని కాలుష్యం

ఏదైనా అవాంఛిత ధ్వనిని శబ్దంగా నిర్వచిస్తారు. శబ్దాన్ని 'దెసిబెల్' (డిబి) పరంగా కొలుస్తారు – ధ్వని యొక్క తీవ్రతను వ్యక్తపరిచే స్కేల్.

- చాలా నిశ్శబ్దంగా ఉండే గదికి 20db సౌండ్ లెవల్ ఉంటుంది.
- కార్లు మరియు గృహూపకరణాల సౌండ్ లెవల్ 70db
- ఒక ట్రక్కు హారన్ 110db శబ్దాన్ని ఉత్పత్తి చేస్తుంది.

నిర్వచనం

ధ్వని కాలుష్యం అంటే 65డిబి కంటే ఎక్కువ అవాంఛిత శబ్దం అని నిర్వచించవచ్చు.

36.1.1 ధ్వని కాలుష్యం యొక్క మూలాలు

- వాహనాలు: అధిక సంఖ్యలో వాహనాలు ఉండటం వల్ల శబ్ద కాలుష్యం ఏర్పడుతుంది. ట్రాఫిక్ మరియు ఆటోమొబైల్స్ యొక్క అనవసరమైన హారన్లు అధిక శబ్దాన్ని కలిగిస్తాయి.
- పరిశ్రమలు: కర్మాగారాల్లో ఉపయోగించే యంత్రాలు మన సాధారణ స్థాయి కంటే ఎక్కువ శబ్దాన్ని మరియు కొన్నిసార్లు ఎక్కువ వినికిడి స్థాయిని ఉత్పత్తి చేస్తాయి.
- నిర్మాణం: ఈ రోజుల్లో భవన నిర్మాణాలు ఎక్కువగా జరుగుతున్నాయి, నిర్మాణ ప్రాంతం యంత్రాల శబ్దాలను ఉ తృత్తి చేస్తుంది. ధ్వని కాలుష్యానికి మైనింగ్ కూడా ఒక మూలం.

36.1.2 ధ్వని కాలుష్యం యొక్క ప్రభావాలు

ఒత్తిడి కారణంగా అనారోగ్యం, శ్వాస ఆడకపోవడం, అధిక రక్తపోటు, వినికిడి లోపం, నిద్రకు భంగం, సరైన ప్రసంగం లేకపోవడం మరియు ఉత్పాదకత కోల్పోవడం శబ్ద కాలుష్యం యొక్క సాధారణ ప్రభావాలు. 70– 80 డెసిబుల్స్ పరిధిలో శబ్దం చిరాకు మరియు చికాకు యొక్క భావాలకు దారితీస్తుంది. శబ్ద (పేరిత వినికిడి నష్టం (ఎన్ఐహెచ్ఎల్) అత్యంత సాధారణ ఆరోగ్య ప్రభావం.

ఇప్పుడు వివిధ రంగాలకు ప్రమాణాలు నిర్దేశించారు. ఇప్పుడు వివిధ రంగాలకు ప్రమాణాలు నిర్దేశించారు. ఆసుపడ్రులు, కోర్టులు, పాఠశాలలు మరియు ఇతర సంస్థల చుట్టూ 100 మీటర్ల ప్రాంతాలను నిశ్యబ్ద జోన్లు అంటారు. వాహనాల హారన్లు మోగించడం, టపాసులు పేల్చడం, లౌడ్ స్పీకర్లు, వ్యాపారులు తమ వస్తువులను విక్రయించే వారి పెద్ద శబ్దాలను నిషేధించారు. ధ్వని స్థాయిలను 50డిబి లోపు ఉంచాలి. పరిశ్రమలు, వాణిజ్య సంస్థలకు కూడా ఇదే విధమైన ఆంక్షలు విధించారు.

36.1.3 కాలుష్య నివారణకు చట్టపరమైన చర్యలు

పర్యావరణానికి ఉత్తమ రక్షణ మొదట కాలుష్య కారకాలను ఉత్పత్తి చేయకపోవడం. అందువల్ల, పరిశ్రమల వల్ల కలిగే పర్యావరణ కాలుష్యాన్ని ఎదుర్కోవటానికి ప్రత్యేకంగా చట్టపరమైన చర్యలను ప్రవేశపెట్టారు. (పట్టిక 36.1) మునుపటి చట్టాల ప్రకారం ప్రత్యేకంగా అనుమతించని చర్యల ద్వారా రాష్ట్రంలో విధాన రూపకల్పన మరియు అమలులో తేదాలను సరిదిద్దదానికి కేంద్ర ప్రభుత్వానికి అధికారం ఇవ్వడం శాసన చర్యల యొక్క ప్రాథమిక లక్షణం.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	W
చట్రం	ఇయర్
ఇండియన్ ఫారెస్ట్ యాక్ట్	1927
వన్యప్రాణి సంరక్షణ చట్టం	1972
నీటి (కాలుష్య నివారణ మరియు నియంత్రణ) చట్టం	1974
వాయు (కాలుష్య నివారణ మరియు నియంత్రణ) చట్టం	1981
పర్యావరణ పరిరక్షణ చట్టం	1986
నేషనల్ ఎన్విరాన్మెంటల్ ట్రిబ్యునల్ చట్టం	1995

పట్టిక 36.1: భారతదేశంలో కాలుష్య నియంత్రణ చట్టాలు

నీటి చట్టం (1974), వాయు చట్టం (1981), పర్యావరణ పరిరక్షణ చట్టం (1995) వంటి కాలుష్య సంబంధిత చట్టాలు కాలుష్యం వల్ల తమకు కలిగే నష్టాల కోసం పర్యావరణ చట్టాల కింద న్యాయస్థానాన్ని ఆశ్రయించే హక్కును ఒక వ్యక్తికి ఇవ్వవు. ఈ హక్కు రాష్ట్ర ప్రభుత్వ సంస్థలకు మాత్రమే ఉంది.

### 36.1 ఇంటెక్స్ ప్రశ్నలు

- 1. శబ్ద కాలుష్యాన్ని నిర్వచించండి?
- 2. ధ్వని కాలుష్యం వల్ల కలిగే సాధారణ ప్రభావాలు ఏమిటి?
- 3. ధ్వని కాలుష్యానికి రెండు కారణాలు తెలపండి?

### **36.2** నేల కాలుష్యం

### నిర్వచనం:

విషపూరిత లోహాలు వంటి కాలుష్య కారకాల వల్ల కలుషితం కావడం వల్ల లేదా సాధారణ స్థాయిల కంటే అధిక సాంద్రతలో సేంద్రీయ లవణాలను జోడించడం వల్ల నేల యొక్క కూర్పులో మార్పు వస్తుంది. సూక్ష్మజీవుల చర్య లేదా మొక్కలు మరియు జంతువుల విచ్ఛిన్నం కారణంగా వివిధ సమ్మేళనాలు మట్టికి జోడించబడతాయి. వర్నాల ద్వారా, గాలుల ద్వారా కూడా మట్టికి అనేక సమ్మేళనాలు జోడించబడతాయి.

# 36.2.1 నేల కాలుష్యానికి మూలాలు

నేల కాలుష్యం ఉత్పత్తి అయ్యే రెండు వనరులు:

#### 1. సహజ వనరులు:

సహజంగా వర్షాల ద్వారా కొన్ని కలుషితాలు నేలల్లో పేరుకుపోతాయి. కొన్ని పొడి పర్యావరణ వ్యవస్థలలో పెర్కోరేట్ అయాన్ మట్టిలో నిక్షిప్తమవుతుంది. ఉరుములు, మెరుపులతో కూడిన మట్టిలో క్లోరిన్ మరియు ఇతర లోహ అయాన్లు కలిగిన పెర్కోరేట్ అయాన్లు ఏర్పడటానికి కారణం కావచ్చు.

2. ఆంత్రోపోజెనిక్ (మానవ నిర్మిత) మూలాలు మానవ నిర్మిత వనరులు మట్టిలో కలుషితానికి ప్రధాన వనరు. అవి:

- ఇటీవలి కాలంలో వ్యవసాయాభివృద్ధికి ఎరువుల వాడకం, చీడపీడలు పెరిగాయి. మెరుగైన మొక్కలను పెంచే సాంకేతిక పరిజ్ఞానం మట్టిలో కలుషితం కావడం. మొక్కలు దెబ్బతినకుండా పురుగుమందులు, పంట నాణ్యతను పెంచేందుకు రసాయనిక ఎరువులు వాడుతున్నారు. మొక్కలపై పిచికారీ చేసే ఈ పురుగుమందులు మట్టిలో ఉండిపోతాయి.
- మైనింగ్ అనేది నేలను కలుషితం చేసే మరొక కారణం. మైనింగ్ వల్ల భారీ లోహాలు మరియు రేడియో ఐసోటోప్లతో మట్టి కలుషితం అవుతుంది.
- 3. పారిశ్రామిక వ్యర్థాలు ముఖ్యంగా విషపూరిత రసాయన వ్యర్థాలను మట్టిలోకి పారవేయడం మరో ప్రధాన కారణం. ఉదాహరణకు ఇనుము మరియు ఉక్కు మరియు అల్యూమినియం పరిశ్రమలు నేలపై దుమ్ము మరియు మట్టి నిక్షేపాలను ఉత్పత్తి చేస్తాయి.
- 4. చమురు ఒలికిపోవడం కూడా వాటి రవాణా సమయంలో మట్టి కలుషితం కావడానికి ఒక మార్గం.
- 5. మురుగునీటిని సరిగ్గా పారవేయకపోతే నేల కాలుష్యంలో భాగం కావచ్చు మరియు అనేక విషపూరిత లోహ అయాన్లు మట్టిలో పేరుకుపోతాయి.
- 6. నాన్ బయోడిగ్రోడబుల్ ప్లాస్టిక్ కూడా నేల కాలుష్యానికి కారణం. ప్లాస్టిక్ సంచుల వాడకం మరియు సరిగా పారవేయకపోవడం మట్టిని కలుషితం చేస్తుంది.

### 36.2.3 నేల కాలుష్యం యొక్క ప్రభావాలు

- 1. మట్టిలో ఉండే అదనపు పురుగుమందులు మరియు రసాయనాల వల్ల మొక్కలు దెబ్బతింటాయి.
- 2. లోహ కాలుష్యం మొక్కలకు హాని కలిగించవచ్చు
- 3. తలనొప్పి, వికారం, దగ్గు, చర్మ అలెర్జీలు వంటి నేల కాలుష్య కారకాల వల్ల కలిగే ఆరోగ్య ప్రమాదాలు.
- 4. మొక్కల ద్వారా ఆహార గొలుసులోకి ప్రవేశించిన కాలుష్య కారకాలు అనేక జీవులకు ప్రాణ నష్టం కలిగిస్తాయి.

# 36.2.4 నేల కాలుష్యం నియంత్రణ

- 1. నాన్ బ్రిద్జిబుల్ ప్లాస్టిక్స్ వాడకాన్ని నిషేధించాలి.
- 2. బయోడిగ్రేడబుల్ కాని పదార్థాలను రీసైకిల్ చేయాలి మరియు మట్టిలో వేయకూడదు.
- 3. మురుగు వ్యర్థాలను శుద్ధి చేయాలి మరియు హానికరమైన పదార్థాలను సురక్షితంగా తొలగించాలి.
- 4. గృహ వ్యర్థాలను సంచులలో సేకరించాలి మరియు తడి మరియు పొడి చెత్తగా సేకరించాలి, తద్వారా తడి చెత్తను మట్టిలో వేయవచ్చు మరియు తరువాత మిశ్రమంగా మార్చవచ్చు. పొడి వ్యర్థాలను రీసైకిల్ చేయవచ్చుబీ అందువల్ల, వ్యర్థాల సేకరణ ముఖ్యమైనది మరియు సరిగ్గా జరుగుతుంది.
- 5. పారిశ్రామిక వ్యర్థాలు పర్యావరణంలోకి వెళ్లకుండా తిరిగి ఉపయోగించాలి.
- 6. కలుషితమైన మట్టిని తొలగించి నివాసేతర ప్రాంతాలకు రవాణా చేయాలి.
- 7. కొన్ని సూక్ష్మజీవులను ఉపయోగించి నిర్మూలన చేయవచ్చు, తద్వారా అవి నేలపై పనిచేస్తాయి.
- 8. లోహ కాలుష్యాన్ని తొలగించడానికి శిలీంద్రాలు ఉపయోగించబడతాయి అంటే, మైకోరేమిడియేషన్.

### 36.3 గ్రీన్ కెమిస్ట్రీ

పర్యావరణ కాలుష్యానికి తోద్పదని ప్రక్రియల ద్వారా ప్రమాదకరం కాని ఉత్పత్తులను సంశ్లేషణ చేసే వ్యూహం గ్రీన్ కెమిస్ట్రీ అని చెప్పబడింది.

[పక్రియ చర్య యొక్క ఉప−ఉత్పత్తులను పూర్తిగా ఉపయోగకరమైన విషయాలకు మార్చగలగాలి మరియు పర్యావరణానికి ఉత్పత్తి ద్వారా హానికరమైన వాటిని జోడించకూడదు.

గ్రీస్ కెమిస్ట్రీ అనేది ఉత్పత్తిని తయారు చేయదంలో సురక్షితమైన పద్ధతులను ఉపయోగించదం, ఇందులో ప్రారంభ ముడిపదార్ధాలు, ప్రాసెసింగ్, ప్యాకింగ్ మరియు పంపిణీ మరియు ఉత్పత్తి యొక్క పారవేయదం వంటివి ఉంటాయి.

# గ్రీన్ కెమిస్టీ యొక్క ప్రయోజనం

- కాలుష్యాన్ని తగ్గిస్తుంది
- ఉత్పత్తులు పునర్వినియోగపరచదగినవి
- సురక్షిత వాతావరణం
- ఉత్పత్తుల నుండి విషపూరిత పదార్దాల తొలగింపు
- ఉత్పత్తుల వల్ల కలిగే దుష్పభావాలను తగ్గించడం

# 36.3.1 (గీస్ కెమిస్టీ సూతాలు

గ్రీన్ కెమిస్ట్రీలో పన్నెండు ప్రాథమిక సూత్రాలు ఉన్నాయి

70

# 1. వ్యర్థాల నివారణ

వ్యర్థాలను సృష్టించడం మరియు వ్యర్థాలను పారవేసేందుకు ప్రయత్నించడం పెద్ద సమస్య. అందువల్ల, వ్యర్థాలు ఉత్పత్తి చేయబడని రసాయన ప్రక్రియలను రూపొందించండి. ఈ విధంగా మనం వ్యర్థాలను ఉత్పత్తి చేయకుండా మరియు ఎలా పారవేయాలో ఆలోచించకుండా నివారణ చర్యలు తీసుకోవచ్చు. చాలా ఔషధ పరిశ్రమలు వాస్తవ ఉత్పత్తి కంటే ఎక్కువ వ్యర్థాలను ఉత్పత్తి చేస్తాయి. కానీ గ్రీన్ కెమిట్టీ సూత్రాలను వర్తింపజేస్తే, మనం వ్యర్థాల ఉత్పత్తిని భారీగా తగ్గించవచ్చు.

#### 2. అటామ్ ఎకానమీ

దీనిని బారీ ట్రోస్ట్ పరిచయం చేశారు. అటామ్ ఎకానమీ అనేది ఉత్పత్తి నిర్మాణంలో (ప్రారంభ పదార్థాల యొక్క అన్ని అణువుల వినియోగం.

పరమాణు ఆర్ధిక వ్యవస్థ శాతరౌ ఉపయోగించిన పరమాణువుల ఫార్ములా బరువు/ అన్ని (పతిచర్యల ఫార్ములా బరువు × 100

### 3. తక్కువ ప్రమాదకర రసాయన సంశ్లేషణలు

ఉపయోగించిన సింథటిక్ పద్ధతులు తక్కువ (ప్రమాదకరమైనవిగా ఉండాలి అంటే అవి తక్కువ హానికరమైన పదార్థాలను ఉత్పత్తి చేయాలి లేదా కనీసం తిరిగి ఉపయోగించగల పదార్థాలను ఉత్పత్తి చేయాలి, తద్వారా వాతావరణానికి విషపూరిత పదార్థాలు జోడించబడవు.

# 4. సురక్షితమైన రసాయనాల రూపకల్పన

ఉత్పత్తి యొక్క సంశ్లేషణలో ఉపయోగించే రసాయనాలు తక్కువ విషపూరితం మరియు ఎక్కువ ఉత్పాదకతను కలిగి ఉందాలి.

#### 5. ఉపయోగించిన సురక్షితమైన ద్రావకాల రూపకల్పన

ప్రతిచర్యలో ఉపయోగించే ద్రావకం ప్రతిచర్యలో ప్రధాన పాత్ర పోషిస్తుంది. ప్రతిచర్య కోసం 70-80% వరకు ద్రావకాలు ఉపయోగించబడతాయి. అందువల్ల, మేము మరిన్ని ఉత్పత్తులలో సహాయపడే ద్రావకాలను ఉపయోగించాలి మరియు అదే సమయంలో అది విషపూరితం కాకూడదు మరియు పర్యావరణ అనుకూలమైనదిగా ఉండాలి.

# 6. శక్తి సామర్థ్యం కోసం డిజైన్

ప్రతిచర్యలు శక్తి వినియోగాన్ని తగ్గించే విధంగా రూపొందించబడాలి. ప్రతిచర్యల సమయంలో విడుదలయ్యే శక్తి పర్యావరణానికి హాని కలిగించకూడదు. అందువలన, ప్రతిచర్యలు పరిసర ఉష్ణోగతలు మరియు పీడనాల వద్ద నిర్వహించబడాలి.

# 7. పునరుత్పాదక వనరుల ఉపయోగం

ముడి పదార్థాలు లేదా ఫీడ్ స్టాక్లలు శిలాజ ఇంధనాల నుండి కాకుండా మొక్కల బయోమాస్ వంటి పునరుత్పాదక

వనరుల నుండి ఉండాలి.

#### 8. ఉత్పన్నాల వినియోగాన్ని తగ్గించండి

అదనపు ద్రావకాలు మరియు రసాయనాలు అవసరం మరియు ఎక్కువ వ్యర్థాలను ఉత్పత్తి చేయడం వలన ఉత్పన్నాలను లేదా సమూహాలను రక్షించకుందా ఉండటానికి ప్రయత్నించండి.

#### 9. ఉత్పేరకము

సాధారణ స్టోయికియోమెట్రిక్ రియాజెంట్ల కంటే ఉత్పేరకాలు ప్రాధాన్యత ఇవ్వాలి. ఉత్పేరకం ప్రతిచర్య యొక్క సామర్థ్యాన్ని పెంచుతుంది మరియు సాధారణ స్టోయికియోమెట్రిక్ రియాజెంట్లతో పోలిస్తే తక్కువ పరిమాణంలో ఉపయోగించబడుతుంది.

#### 10. అధోకరణం కోసం డిజైన్

తుది ఉత్పత్తులను సరిగ్గా ఉపయోగించుకునే విధంగా ప్రతిచర్యలు రూపొందించబడాలి అంటే, పర్యావరణానికి హాని కలిగించకుండా ఉత్పత్తి పూర్తిగా అధోకరణం చెందేలా ఉండాలి.

# 11. కాలుష్య నివారణకు నిజ-సమయ విశ్లేషణ

ప్రక్రియలు లేదా ప్రతిచర్యలు సాధారణ దశలో పర్యవేక్షించబడాలి, తద్వారా హానికరమైన పదార్ధాలు తనిఖీ చేయబడతాయి మరియు నియంత్రించబడతాయి. అందువల్ల, పర్యవేక్షణ కోసం విశ్లేషణాత్మక పద్దతులను రూపొందించాలి.

# 12. ప్రమాద నివారణకు స్వాభావికమైన సురక్షిత రసాయన శాగ్రం

ప్రతిచర్యలు సురక్షితంగా మరియు పర్యావరణ అనుకూలమైనవి మరియు ప్రతిచర్యల సమయంలో పేలుళ్లు, మంటలు మరియు ప్రమాదాలను తగ్గించాలి.

# 36.3.2 ప్రస్తుత జీవితంలో గ్రీన్ కెమిస్ట్రీ యొక్క అప్లికేషన్

# 1. ఎకో (ఫెండ్లీ పద్ధతిలో డై క్లీన్ అప్ బట్టలు

పెర్కోరెథిలిన్ (PERC) అనే రసాయనాన్ని ఉపయోగించి బట్టలు డ్రె క్లీన్ చేయబడతాయి. ఈ రసాయనం గాలిని కలుషితం చేసి క్యాన్సర్కు కూడా కారణమైంది.

మైసెల్ టెక్నాలజీస్ మైసెల్ను అభివృద్ధి చేసింది, ఇది మెటల్ క్లీనింగ్ (ఫేమ్వర్క్, ఇది CO2 మరియు వస్రాలను శుభం చేయడానికి ఒక సర్ఫ్యాక్టెంట్ను ఉపయోగిస్తుంది. ఈ సాంకేతికతను జోసెఫ్ డీ సైమన్స్, తిమోతీ రోమార్క్ మరియు జేమ్స్ అభివృద్ధి చేశారు.

### 2. టర్బిడ్ వాటర్ క్లియరింగ్

సాధారణంగా, అల్యూమినియం సల్ఫేట్, ముఖ్యంగా నీటి సరఫరాలో టర్బిడ్ వాటర్ను క్లియర్ చేయడానికి ఉ పయోగిస్తారు. కానీ ఇది చర్మం చికాకు, మైకము, గొంతు ఇన్ఫెక్షన్లు, ఉబ్బిన ముఖం, అలెర్జీ ప్రతిచర్యలు మరియు చర్మపు పుండు వంటి దుడ్పుభావాలను కలిగి ఉంటుంది. ఈ హానికరమైన ప్రభావాన్ని నివారించడానికి, వ్యవసాయ వ్యర్థమైన చింతపండు గింజల పొడిని ఉపయోగించడం తాజా అవిష్కరణ. మునిసిపల్ మరియు పారిశ్రామిక నీటిని టర్బిడ్ వాటర్ క్లియర్ చేయడానికి చింతపండు గింజలతో శుద్ధి చేస్తారు. చింతపండు గింజల కెర్నల్ యొక్క ప్రయోజనం ఏమిటంటే ఇది తక్కువ ధర, పాడైపోయే మరియు విషపూరితం కాదు.

### 3. కాగితం బ్లీచింగ్

ఇంతకు ముందు క్లోరిస్ వాయువు కాగితం బ్లీచింగ్లో ఉపయోగించబడింది, ఇక్కడ అది లిగ్నిస్ పేపర్ తో క్యాన్సర్ కారకాలను ఏర్పరుస్తుంది. ఈ రోజుల్లో, హైద్రోజన్ పెరాక్పైడ్ క్లోరిస్ వాయువుతో భర్తీ చేయబడింది. హైద్రోజన్ పెరాక్ష్రెడ్ TAML (ఐరన్–టెట్రామిడో మాక్రోసైక్లిక్ లిగాండ్) యాక్టివేటర్ల ద్వారా ఉత్త్భేరకంగా లిగ్నిస్ను వేగంగా విచ్చిన్నం చేస్తుంది. అందువలన, తక్కువ ఉష్ణోగతలు మరియు తక్కువ సమయంలో ఎక్కువ లిగ్నిస్ విచ్చిన్నమవుతుంది.



Fe- TAML యాక్షివేటర్

## 4. ఔషధ పరిశ్రమలో

ఇబుప్రోఫెన్ ఆరు దశల ప్రక్రియ కంబే ప్రస్తుతం 3 దశల ప్రక్రియలో సంశ్లేషణ చేయబడింది. అధిక కొలెస్టాల్ కోసం ఔషధం, మల్టీస్టెప్ పద్ధతిలో సంశ్లేషణ చేయబడిన జోకోర్ ఇప్పుడు ఎంజైమ్లలు మరియు ఫీడ్స్టాక్లలను ఉపయోగించి వేగంగా తయారు చేయబడింది. యూ ట్రీ బెరడు టాక్సోల్ అనే కెమోథెరపీటిక్ డ్రగ్ సంశ్లేషణలో ఉ పయోగించబడింది. ఇందుకోసం పెద్ద పెద్ద చెట్లను నరికివేశారు. ఇప్పుడు అదే మందును కిణ్వ ప్రక్రియ వ్యాట్ ద్వారా పొందిన చెట్టు కణాలను పెంచడం ద్వారా తయారు చేస్తారు.

$$CH_{2} = CH_{2} + O_{2} \xrightarrow{Catalyst}{Pd(II)/Cu(II)(In water)} CH_{3}CHO(90\%)$$

# టెర్మినల్ ప్రశ్నలు

- 1. నేల కాలుష్యాన్ని నిర్వచించండి?
- 2. నేల కాలుష్యం యొక్క మూలాలు ఏమిటి?

- 3. నేల కాలుష్యాన్ని ఎలా నియంత్రించవచ్చు?
- 4. గ్రీన్ కెమిస్ట్రీ అంటే ఏమిటి?
- 5. గ్రీస్ కెమిస్ట్రీకి సంబంధించిన సూత్రాలను ఇవ్వండి?
- 6. (గీన్ కెమిస్ట్రీ యొక్క అప్లికేషన్లు ఏమిటి?
- 7. ఉత్భైరకం అంటే ఏమిటి?

# 36.1 Intext ప్రశ్నలకు సమాధానాలు

- 1. శబ్ద కాలుష్యాన్ని 65db కంటే ఎక్కువ అవాంఛిత శబ్దంగా నిర్వచించవచ్చు.
- 2. 36.1.2 చూడండి.
- 3. 36.1.1ని చూడండి

# 32.B పెట్రో కెమికల్స్

పెట్రోకెమికల్స్ అనేవి పెట్రోలియం నుండి తీసుకోబడిన రసాయనాలు. పెట్రోకెమికల్స్ చాలా విస్తారమైన రసాయనాలను కలిగి ఉంటాయి. మీరు వాటి అర్థం, వర్గీకరణ, ఉత్పత్తి మరియు అప్లికేషన్ గురించి తెలుసుకుంటారు. ఈ పాఠం సబ్బులు మరియు డిటర్జెంట్లు మరియు రాకెట్ల ఇంధనాలతో కూడా వ్యవహరిస్తుంది. వాటిలో చాలా ముఖ్యమైనవి పెట్రోకెమికల్స్ నుండి పొందిన ఉప ఉత్పత్తులు.

#### లక్ష్యాలు

ఈ పాఠాన్ని చదివిన తర్వాత మీరు వీటిని చేయగలరు:

- పెట్రోకెమికల్స్ నిర్వచించడం
- ఫ్లో షీట్ రేఖాచిత్రంతో వివిధ తరాల పెట్రోకెమికల్లను వివరించడం:
- పెట్రోకెమికల్స్ యొక్క వివిధ ఉదాహరణలను ఉదహరించడం;
- వివిధ పెట్రోకెమికల్స్ ఉపయోగాలు జాబితా వివరించడం
- భారతదేశంలో పెట్రోకెమికల్స్ స్థితి గురించి వివరించడం
- సబ్బులు మరియు డిటర్జెంట్ల మధ్య తేదా వివరించడం
- డిటర్జెంట్ల రకాలను వివరించడం
- సబ్బుల కంటే డిటర్జెంట్ల ప్రయోజనాలు మరియు అప్రయోజనాలను జాబితా చేయడం
- సబ్బులు మరియు డిటర్జెంట్ల శుభ్రపరిచే చర్యను వివరించడం
- రాకెట్ ప్రొపెల్లెంట్లను వివరించడం
- వివిధ రకాల రాకెట్ ట్రొపెల్లెంట్లలో ఉపయోగించే రసాయనాల ఉదాహరణలను ఇవ్వదం మరియు
- భారత అంతరిక్ష కార్యక్రమాలకు సంబంధించి ప్రొపెల్లెంట్ల స్థితి గురించి వివరించడం.

### 32.1 పెట్రో కెమికల్స్ అంటే ఏమిటి?

పెట్రోలియం నుండి తీసుకోబడిన రసాయనాలను పెట్రోకెమికల్స్ అంటారు. వీటిని పాలిమర్లు, డిటర్జెంట్లు మరియు ఇతర ప్లాస్టిక్ పదార్ధాల తయారీలో ఉపయోగిస్తారు. పెట్రోలియం అనేది శిలాజ అవశేషాల కుళ్ళిపోవడం ద్వారా ఏర్పడిన హైద్రోకార్బన్ల సంక్లిష్ట మిశ్రమం. ఇది ద్రవ (ముడి చమురు), వాయువు (సహజ వాయువు) లేదా ఘనపదార్ధాలు (చమురు షేల్స్) వలె ఉంటుంది మరియు లోతైన భూగర్భంలో లేదా సముద్రపు అడుగుభాగంలో కనుగొనబడుతుంది. పెట్రోలియం అనేక ఉపయోగకరమైన భిన్నాలకు శుద్ధి చేయబడుతుంది, వీటిని ఇంధనం (LPG, పెట్రోల్, డీజిల్, మొదలైనవి) లేదా కందెనలుగా ఉపయోగిస్తారు. దాదాపు 10% పెట్రోలియం రసాయనాల (శేణిని తయారు చేయడానికి ఉపయోగించబడుతుంది. పెట్రోకెమికల్స్ అనేది పెట్రోలియం లేదా సహజ వాయువు యొక్క హైద్రోకార్బన్ల నుండి ప్రత్యక్షంగా లేదా పరోక్షంగా ఉత్పత్తి చేయబడిన రసాయనాల సమూహంగా నిర్వచించవచ్చు. పెట్రోలియం శుద్ధి సమయంలో కొన్ని వాయు హైద్రోకార్బన్లు ఉప ఉత్పత్తిగా కూడా పొందబడతాయి. ఈ హైద్రోకార్బన్లు ఒకటి నుండి ఐదు కార్బన్ పరమాణువులను కలిగి ఉండవచ్చు, ఉదాహరణకు, మీథేన్, ఈథేన్, ప్రొపేన్, బ్యూబేన్, ఐసో–బ్యూబేన్, పెంబేన్, మొదలైనవి. మీథేన్ (CH4) కూడా సహజ వాయువులో ప్రధాన హైద్రోకార్బన్ భాగం, ఇది పెట్రోలియంతో కలిసి వస్తుంది.

నేడు, పెట్రోకెమికల్స్ మరియు పెట్రోకెమికల్స్ నుండి ఉత్పన్న మయ్యే పదార్థాలకు డిమాండ్ చాలా ఎక్కువగా ఉంది కాబట్టి మనం ఉద్దేశపూర్వకంగా పగుళ్లు (ప్రక్రియ (cracking) ద్వారా అధిక హైడ్రోకార్బన్లను చిన్న హైడ్రోకార్బన్లుగా మార్చాలి.

పెట్రోకెమికల్స్ జాబితా అంతులేనిది. కొన్ని ముఖ్యమైన పెట్రోకెమికల్స్ మిథ్లెల్ ఆల్కహాల్, ఇథ్లెల్ ఆల్కహాల్, అసిటాల్డిహైడ్, ఎసిటిక్ యాసిడ్, ఎసిటిక్ అన్ హైడైడ్, అసిటోన్, బెంజీన్, టోలున్, జిలీన్స్, ఫినాల్, వినైల్ క్లోరైడ్ మొదలైనవి. వీటిలో కొన్నింటిని నేరుగా లేదా ఇతర ఉపయోగకరమైన పదార్ధాల తయారీకి ముడి పదార్ధాలుగా ఉపయోగించవచ్చు. ఇవి ద్రావకాలు, సంసంజనాలు, యాంటీట్రీజ్లు, సింథటిక్ రబ్బర్లు, సింథటిక్ డిటర్జెంట్లు, రాకెట్ ఇంధనాలు మొదలైన అనేక రకాల ఉపయోగకరమైన పదార్ధాలను తయారు చేయడానికి ఉపయోగించబడతాయి. మానవ కార్యకలాపాల యొక్క ప్రతి ప్రాంతం పెట్రోకెమికల్స్ లేదా పెట్రోకెమికల్స్త్ తయారైన పదార్ధాలను ఉ పయోగిస్తుంది కాబట్టి, పెట్రోకెమికల్స్ లేని మన జీవితం. చాలా భిన్నంగా మరియు తక్కువ సౌకర్యంగా ఉంటుంది.

#### 32.2 పెట్రోకెమికల్స్ వర్గీకరణ

పెట్రోకెమికల్స్ ఫీడ్–స్టాక్, (పైమరీ, ఇంటర్మీడియట్ పెట్రోకెమికల్స్ మరియు తుది ఉత్పత్తులను అర్థం చేసుకోవడానికి ప్రయత్నిద్దాం.

# ఫీద్-స్టాక్

పెట్రోకెమికల్స్ ఉత్పత్తికి ఉపయోగించే ప్రారంభ పదార్థాన్ని ఫీడ్స్టాక్ అంటారు. పెట్రోకెమికల్స్ తయారీకి రెండు సాధారణ ఫీడ్ స్టాక్లు ఉన్నాయి.

## ఇవి: 1. సహజ వాయువు 2. నాప్తా మరియు సంస్కరించబడిన నాప్తా

సహజ వాయువు యొక్క ప్రధాన హైడ్రోకార్బన్ భాగం మీథేన్. నాప్తా అనేది పెట్రోలియం శుద్ది సమయంలో లభించే భిన్నం.

కొన్ని దేశాలు లేదా పరిశ్రమలు సహజ వాయువును ఉపయోగించదానికి ఇష్టపడతాయి, మరికొన్ని పెట్రోకెమికల్స్ ఉత్పత్తికి నాప్తాను (పారంభ పదార్థంగా (ఫీడ్ స్టాక్) ఉపయోగిస్తాయి. ఒక నిర్దిష్ట దేశం లేదా పరిశ్రమ ద్వారా సహజ వాయువు లేదా నాప్తాను ఫీడ్ స్టాక్గా ఉపయోగించడం కోసం ఎంపిక నిర్దిష్ట ఫీడ్ స్టాక్ లభ్యత లేదా పెట్రోకెమికల్స్ తయారీకి సాంకేతికత లభ్యతపై ఆధారపడి ఉంటుంది.

76

# ప్రాథమిక పెట్రోకెమికల్స్

ప్రాథమిక పెట్రోకెమికల్స్ ఫీడ్ స్టాక్ నుండి పొందిన అణువులు మరియు పెట్రోకెమికల్ ఇంటర్మీడియట్లను తయారు చేయడానికి ఉపయోగిస్తారు. ఫీడ్స్టాక్ సహజ వాయువు, నాప్తా మరియు సంస్కరించబడిన నాప్తా ఉంటాయి కాబట్టి, ఇవి వేర్వేరు ప్రాథమిక పెట్రోకెమికల్లను అందిస్తాయి. వీటి నుండి పొందిన ప్రాథమిక పెట్రోకెమికల్ టేబుల్ 32.1లో సంకలనం చేయబడింది.

Table 32.1: Important Primary Petrochemicals from different feed stocks

S.No.	Feed Stock	Primary petrochemicals	Formulae
1.	Natural	Ethene Prepone Ethyne	$\begin{array}{l} \mathrm{CH}_2 = \mathrm{CH}_2 \\ \mathrm{CH}_3 - \mathrm{CH} = \mathrm{CH}_2 \\ \mathrm{CH} \equiv \mathrm{CH} \end{array}$
2.	Naphtha	Ethene Propene Butadiene	$\begin{array}{l} \mathrm{CH}_2 = \mathrm{CH}_2 \\ \mathrm{CH}_3 - \mathrm{CH}_2 = \mathrm{CH}_2 \\ \mathrm{CH}_3 = \mathrm{CH}_2 - \mathrm{CH} = \mathrm{CH}_2 \end{array}$
3.	Refomed Naphtha	Benzene	$\bigcirc$
		Toluene	CH ₃
		o - xylene	CH ₃ CH ₃
		<i>m</i> - xylene	CH ₃ CH ₃
		p - xylene	CH ₃ CH ₃

# ఇంటర్మీడియట్ పెట్రోకెమికల్స్ మరియు దెరివేటివ్స్

రసాయన చర్య ద్వారా ప్రాధమిక పెట్రోకెమికల్స్ నుండి పొందిన పెట్రోకెమికల్స్ (ద్వితీయ) మధ్యంతర అంటారు. ఈ ఇంటర్మీడియట్ పెట్రోకెమికల్స్ రసాయన ప్రతిచర్య లేదా ఇతర తుది ఉపయోగాల కోసం ఉత్పత్తులను పొందడానికి ప్రతిచర్యల (శేణి ద్వారా పెట్రోకెమికల్స్ యొక్క ఉత్పన్నాలను పొందడానికి మరింత ప్రాసెస్ చేయబడతాయి.



Fig. 32. 1: పెట్రోలియం, ఫీడ్స్టాక్, (పైమరీ పెట్రోకెమికల్స్, సెకండరీ (ఇంటర్మీడియట్) పెట్రోకెమికల్స్ మరియు ఉ పయోగకరమైన తుది ఉత్పత్తుల మధ్య సంబంధం.

# డాన్ (స్టీమ్ పెట్రోకెమికల్స్

ఇచ్చిన ఫీడ్స్టాక్ నుండి ప్రతిచర్య డ్రేణి ద్వారా పొందిన పెట్రోకెమికల్లను డౌన్ స్టీమ్ పెట్రోకెమికల్స్ అంటారు. డౌన్ స్టీమ్ అంటే ఒక నిర్దిష్ట పెట్రోకెమికల్ ఉత్పత్తి చేయబడిన రసాయనాల క్రమంలో తరువాతి దశలో వస్తుంది. ఉ దాహరణకు క్రింది ప్రతిచర్యలలో.

$$CH_4 \rightarrow CH_3Cl \rightarrow CH_3OH$$

#### ఇంటెక్న్ ప్రశ్నలు 32.1

1) పెట్రోకెమికల్స్ నిర్వచించండి.

.....

2) పెట్రోకెమికల్స్ కు సంబంధించి ఫీడ్ స్తాక్ అనే పదం ద్వారా మీరు ఏమి అర్థం చేసుకున్నారు?

.....

3) పరిశ్రమలో పెట్రోకెమికల్స్లో ఉపయోగించే రెండు ఫీడ్ సాక్ల పేర్లను బ్రాయండి?

.....

4) దిగువ పెట్రోకెమికల్ అనే పదం ద్వారా మీరు ఏమి అర్ధం చేసుకున్నారు? ఒక ఉదాహరణతో వివరించండి.

.....

5) మీథేస్ మిథైల్ క్లోరైడ్గా మారుతుంది, మిథైల్ క్లోరైడ్ మిథైల్ ఆల్కహాల్గా మారుతుంది. ఈ సందర్భంలో మొదటి తరం మరియు రెండవ తరం పెట్రోకెమికల్సు గుర్తించండి.

# 32.3 మీథేన్ నుండి పెట్రోకెమికల్స్

సహజ వాయువులో మీథేన్ ప్రధాన హైడ్రోకార్బన్ భాగం. CNG అనేది సంపీదన సహజ వాయువు మరియు LNG అనేది ద్రవీకృత సహజ వాయువు. అంతేకాకుండా, పెట్రోలియం శుద్ధి యొక్క ఉప ఉత్పత్తిగా కూడా మీథేన్ పెద్ద పరిమాణంలో పొందబడుతుంది.

మీథేస్ నుండి ఉత్పత్తి చేయబడిన ప్రధాన పెట్రోకెమికల్స్:

1) క్లోరినేటెడ్ ఉత్పత్తులు 2) అసంతృప్త హైద్రోకార్బన్లు 3) కార్బన్ నలుపు (Carbon Black)

4) హైదోజన్ 5) మిథైల్ ఆల్సహాల్

# 1. మీథేన్ యొక్క క్లోరినేటెడ్ ఉత్పత్తులు

మిథైల్ క్లోరైడ్ (CH3Cl), మిథైలీన్ క్లోరైడ్ (CH₂CI₂), క్లోరోఫామ్ (CHCl₃) మరియు కార్బన్ బెటాక్లోరైడ్ (CCl₄) పొందడానికి మీథేన్ క్లోరినేట్ చేయబడుతుంది. మీథేన్ యొక్క చాలా క్లోరినేటెడ్ ఉత్పత్తులను ద్రావకం వలె ఉపయోగిస్తారు.

# 2. అసంతృప్త హైదోకార్బన్లు

ఇథిలీన్, ప్రొపైలిన్ మరియు ఎసిటిలీన్లను పొందడానికి తగిన ఉత్పేరకాల సహాయంతో మీథేన్ పగుళ్లు (పైరోలిసిస్ ద్వారా) చెందుతుంది. ఇవి ఇతర ఉత్పత్తులను పొందడానికి ఉపయోగించబడతాయి, ఇది తరువాత చర్చించబడుతుంది.

# 3. కార్బన్ బ్లాక్

మీథేన్ పైరోలిసిస్ (పగుళ్లు) ద్వారా కార్బన్ బ్లాక్ (కార్బన్ యొక్క ఒక రూపం) గా మార్చబడుతుంది మరియు హైద్రోజన్ ఉప ఉత్పత్తిగా పొందబదుతుంది. బ్లాక్ ప్రింటింగ్ ఇంక్ తయారీలో మరియు రబ్బరు టైర్ పరిశ్రమలో కార్బన్ బ్లాక్ బ్లాక్ పిగ్మెంట్ ఉపయోగించబడుతుంది.

4. హైదోజన్

మీథేస్ పైరోలైసిస్ ద్వారా పొందిన హైద్రోజన్ అమ్మోనియా గ్యాస్ తయారీకి ఉపయోగించబడుతుంది. అమ్మోనియా యూరియా (ఎరువు), అమ్మోనియం నైట్రేట్ మరియు అనేక ఇతర ఉత్పత్తుల తయారీకి ముడి పదార్థంగా ఉపయోగించబడుతుంది.

# 5. మిథైల్ ఆల్మహాల్

మీథేన్ ఉత్రేరక ఆక్సీకరణ ద్వారా మిథనాల్ (మిథైల్ ఆల్కహాల్, CH3OH) గా మార్చబడుతుంది.

### CATALYST

 $\mathsf{CH}_4 + \mathsf{O}_4 \rightarrow \mathsf{CH}_3\mathsf{OH}$ 

ఫార్మాల్దిహైడ్ పొందడానికి మిథైల్ ఆల్కహాల్ (మిథనాల్) మరింత ఆక్సీకరణం చెందుతుంది. ఫార్మాల్దిహైడ్ ఉపయోగకరమైన ఉత్పత్తుల సంఖ్యకు ముఖ్యమైన ముడి పదార్థం, ఉదాహరణకు ఫినాల్–ఫార్మాల్దిహైడ్ రెసిన్లు (బేకెలైట్). మిథైల్ ఆల్కహాల్ ఒక ముఖ్యమైన పారి(శామిక ద్రావకం.

# 32.4 ఇథిలీన్ నుండి పెట్రోకెమికల్స్

ఎథైన్ సహజ వాయువు యొక్క పైరోలైసిస్ ద్వారా లేదా నాప్తా నుండి క్రాకింగ్ ద్వారా పొందబడుతుంది. ఇథిలీన్ ఒక అసంతృప్త హైడ్రోకార్బన్ మరియు కార్బన్–కార్బన్ డబుల్ బంధాన్ని కలిగి ఉంటుంది. అందువల్ల, ఇథిలీన్ చాలా రియాక్టివ్ మరియు వివిధ రకాల పెట్రోకెమికల్స్ మరియు ఉపయోగకరమైన తుది ఉత్పత్తులకు మార్చబడుతుంది. ఇథిలీన్ నుండి ఉత్పత్తి చేయబడిన ప్రధాన పెట్రోకెమికల్స్:

1) ఇథైల్ ఆల్మహాల్

- 2) ఇథిలీన్ ఆక్షైడ్
- 3) ఇథిలీన్ గైకాల్
- 4) డైక్లోరోథేన్
- 5) వినైల్ క్లోరైడ్
- 6) పాలీ ఇథిలీన్
- 7) ఇథైల్ బెంజీన్

# 1. ఇథైల్ ఆల్మహాల్

ఇథైల్ ఆల్కహాల్ (ఇథనాల్) ఇథిలీన్ యొక్క ఆర్ట్రీకరణ (హైడ్రేషన్) ద్వారా తయారవుతుంది. ఎసిటిక్ యాసిడ్, ఇథైల్ అసిటేట్ మరియు పెద్ద సంఖ్యలో ఇతర ఉపయోగకరమైన ఉత్పత్తుల తయారీకి ఇథైల్ ఆల్కహాల్ ద్రావకం మరియు ముడి పదార్థంగా ఉపయోగించబడుతుంది.

# $H_2C = CH_2 \xrightarrow{H_2O/H_2SO_4} CH_3CH_2OH$ (ethanol)

### 2. ఇథిలీన్ ఆక్సైడ్

ఇథిలీన్ ఉత్రేరకం సమక్షంలో గాలి లేదా ఆక్సిజన్తో ఇథిలీన్ ఆక్రైడ్గా ఆక్సీకరణం చెందుతుంది. ఇది ఇథిలీన్ గైకాల్ తయారీకి ముడి పదార్థం, ఇది పాలిస్టర్ తయారీకి ప్రారంభ పదార్థం.

$$H_2C = CH_2 \xrightarrow{Catalyst} H_2C \xrightarrow{CH_2} CH_2$$

#### (ethylene oxide)

# 3. ఇథిలీనెగ్జైకాల్

ఇథైల్ గైకాల్ (1,2–డైహైద్రాక్సీథేన్) ఇథిలీన్తో ప్రారంభించడం ద్వారా తయారు చేయబడుతుంది. ఇథిలీన్ను ఇథిలీన్ గైకాల్గా మార్చదానికి అనేక పద్ధతులు ఉన్నాయి.

గైకోలిస్ ఆటోమొబైల్స్లో యాంటీ–ట్రీజ్గా ఉపయోగించబడుతుంది. ఇథిలీన్ గైకోలిస్ పాలిస్టర్ తయారీకి ఒక ముఖ్యమైన ప్రారంభ పదార్థం.

 $H_2C = CH_2 \longrightarrow HO - CH_2 - CH_2 - OH$ 

(ethylene glycol)

# 4. డైక్లోరోథేన్

 $H_2C = CH_2 + Cl_2 \longrightarrow Cl - CH_2 - CH_2 - CI$ 

(1, 2 - dichloroethane)

డైక్లోరోథేన్ (1,2–డైక్లోరోథేన్) క్లోరిన్ చర్య ద్వారా ఇథిలీన్ నుండి తయారవుతుంది. ఇది ఇథిలీన్ గైకాల్, వినైల్ క్లోరైడ్ మొదలైన అనేక ఇతర ముడి పదార్థాలకు ప్రారంభ పదార్థంగా ఉపయోగించబడుతుంది.

# 5. వినైల్సోరైడ్

వినైల్స్తోరైడ్ నేరుగా ఇథిలీన్ నుండి తయారు చేయబడుతుంది లేదా ఇథిలీన్ డైక్లోరైడ్ నుండి తయారు చేయబడుతుంది.

 $H_2C = CH_2 + Cl_2 \longrightarrow CH_2 = CH - Cl + HCI$ (vinyl chloride)

 $Cl - CH_2 - CH_2 - Cl_2 \longrightarrow CH_2 = CH - Cl + HCI$ (vinyl chloride) 6. పాలిథిలిన్

పాలిమరైజేషన్లో ఇథిలీన్ పాలిథిలిన్ (పాలిథీన్) ఇస్తుంది, ఇది ఒక ముఖ్యమైన ప్లాస్టిక్ పదార్థం.

 $\mathbf{n} \ \mathbf{H}_2\mathbf{C} = \mathbf{C}\mathbf{H}_2 \longrightarrow -\mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 \left[ -\mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 - \mathbf{I}_n \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 \right]$ 

(ethylene) (polyethylene)

### 7. ఇథైల్బెంజీన్

ఇథైల్ బెంజీస్ ఇవ్వదానికి తగిన ఉత్పేరకం సమక్షంలో ఇథిలీన్ బెంజీస్తో చర్య జరుపుతుంది. ఇథైల్బెంజీస్ స్టైరీన్గా మార్చబడుతుంది. స్టైరిన్ అనేది ఒక ముఖ్యమైన ప్లాస్టిక్ పదార్థం పాలీ(స్టీరిన్ తయారీకి ముడి పదార్థం.

$$H_2C = CH_2 \xrightarrow{Catalyst} CH_3 - CH_3$$

# Etnylbenzene

# 32.5 ప్రొపైలిన్ నుండి పెట్రోకెమికల్స్

ట్రొపైలిన్ సహజ వాయువు యొక్క పైరోలైసిన్ లేదా నాప్తా పగుళ్లు ద్వారా పొందబడుతుంది. ట్రొపైలిన్ ఒక అసంతృప్త హైట్రోకార్బన్.

ట్రొపైలిన్ నుండి ఉత్పత్తి చేయబడిన ప్రధాన పెట్రోకెమికల్స్:

- 1. ఐసో-ప్రొపైల్ ఆల్కహాల్ 2. పాలీప్రొఫైలిన్
- 3. క్యూమెన్ (ఐసోప్రొపైల్ బెంజీన్) 4. గ్లిసరాల్

# 32.6 ఎసిటిలీస్ నుండి పెట్రోకెమికల్స్

ఎసిటిలీన్ (ఇథైన్) సహజ వాయువు పైరోలైసిస్ ద్వారా పొందబదుతుంది. ఇది అసంతృప్త హైడ్రోకార్బన్. ఇది కార్బన్–కార్బన్ ట్రిపుల్ బంధాన్ని కలిగి ఉంటుంది. ఇది ప్రకృతిలో చాలా రియాక్టివ్గా ఉంటుంది. ఎసిటలీన్ నుండి ఉత్పత్తి చేయబడిన ప్రధాన పెట్రోకెమికల్స్:

- 1. వినైల్ క్లోరైడ్, వినైలాసెటేట్ మరియు అక్రిలోనిటైల్
- 2. ఎసిటాల్డిహైద్

# 32.7 బ్యూటాడీన్ నుండి పెటోకెమికల్స్

1,3–బుటాడీన్ నాప్తా నుండి క్రాకింగ్ ద్వారా పొందబదుతుంది. ఇది ఒక డైన్, అంటే రెందు కార్బన్–కార్బన్ డబుల్ బాండ్లను కలిగి ఉంటుంది.

ఇది సహజ రబ్బరుకు ప్రత్యామ్నాయంగా ఉపయోగించే పాలీబుటాడిన్కు మోనోమర్. పాలిమరైజేషన్పై బ్యూటాడిన్ మరియు స్టైరీన్, BUNA-S అనే కోపాలిమర్ను అందిస్తాయి.

### 32.8 బెంజీన్ నుండి పెటోకెమికల్స్

బెంజీస్ సంస్కరించబడిన నాప్తా నుండి పొందబదుతుంది. నాప్తా ఉత్రేరక సంస్కరణకు లోబడి ఉంటుంది (దీనిని అరోమటైజేషన్ అని కూడా అంటారు). ఈ ప్రక్రియలో నాప్తాలో ఉన్న అరిఫాటిక్ హైద్రోకార్బన్లు సుగంధ హైద్రోకార్బన్లుగా మార్చబడతాయి.

బెంజీన్ నుండి పొందిన ముఖ్యమైన పెట్రోకెమికల్:

- 1. ఇథైర్ బెంజీస్ మరియు క్యూమెస్ 2. క్లోరోబెంజీస్
- 3. నైటోబెంజీన్ 4. సైక్లో హెక్సేస్
- 5. వీనియర్ ఆల్రైల్ బెంజెన్లు (LAB) 6. బ్రాంచ్డ్ ఆల్రైల్ బెంజెన్స్ (BAB)

### ఇంటెక్స్ ప్రశ్నలు 32.2

1. ప్రాథమిక పెట్రోకెమికల్స్ నిర్వచించండి.

.....

2. సహజ వాయువు నుండి పొందిన మూడు పెట్రో రసాయనాలను పేర్కొనండి.

.....

3. ప్రొపెన్ నుండి పొందిన ముఖ్యమైన పెట్రోకెమికల్స్ ఏమిటి?

.....

4. ఇథైన్ (ఎసిటిలీన్) నుండి పొందిన ముఖ్యమైన పెట్రోకెమికల్స్ ఏమిటి?

.....

5. బెంజీన్ నుండి పొందిన పెట్రోకెమికల్స్ ఏమిటి?

### 32.9 సబ్బులు మరియు డిటర్జెంట్లు

సబ్బులు మరియు డిటర్జెంట్లు క్లీనింగ్ ఏజెంట్లుగా విస్త్రతంగా ఉపయోగించబడుతున్నాయి. రసాయనికంగా సబ్బులు మరియు డిటర్జెంట్లు ఒకదానికొకటి భిన్నంగా ఉంటాయి. సబ్బులు మరియు డిటర్జెంట్లు ద్రావణం యొక్క ఉపరితల ఉద్రిక్తతను తగ్గిస్తాయి. ఇటువంటి పదార్ధాలను సర్ఫ్యాక్రెంట్ల యొక్క ఉపరితల–క్రియాశీల ఏజెంట్లు అంటారు.

### సబ్బులు మరియు డిటర్మైంట్లు:

- 1. శుభ్రపరిచే ఏజెంట్లగా ఉపయోగిస్తారు
- 2. ద్రావణంలో ఏర్పడే నురుగుకు కారణం
- 3. తక్కువ ఉపరితల ఉదిక్తత
- 4. అణువులు ద్రావణం యొక్క ఉపరితలం దగ్గర కేంద్రీకృతమై ఉంటాయి

- 5. ఉపరితల-క్రియాశీల ఏజెంట్లు
- 6. సర్ఫ్యాక్రెంట్ల
- 7. గ్రీజును ఎమల్సిపై చేయవచ్చు
- 8. మురికి మొదలైన వాటిని తొలగించవచ్చు.

#### హైడ్రోఫిలిక్ మరియు లిపోఫిలిక్ భాగాలు

సబ్బు మరియు డిటర్జెంట్ అణువులు రెందూ రెందు భాగాలను కలిగి ఉంటాయి. అణువులోని ఒక భాగం ద్రువ (అయానిక్) స్వభావం కలిగి ఉంటుంది. కార్బాక్సి-లేట్ (-COO) లేదా సల్ఫోనేట్ (-SO₃-) వంటి సమూహాల ఉనికి కారణంగా ద్రువ స్వభావం ఏర్పదుతుంది. ద్రువ సమూహం ఒక హైద్రోఫిలిక్ సమూహం. హైద్రోఫిలిక్ సమూహం సబ్బులు మరియు డిటర్జెంట్లను నీటిలో కరిగేలా చేస్తుంది. సబ్బు లేదా డిటర్జెంట్ మాలిక్యూల్లోని ఇతర భాగం నాన్ పోలార్ (నానియోనిక్) అది లిపోఫిలిక్ (గొలుసు ఆల్రైల్ లేదా పొడవైన గొలుసు ప్రత్యామ్నాయ ఆరిల్ సమూహం) అణువు నూనెను కరిగేలా చేస్తుంది.

సబ్బు లేదా డిటర్జెంట్ అణువులోని హైద్రోఫిలిక్ (ద్రువ) భాగం యొక్క స్వభావాన్ని బట్టి ఇవి అయానిక్, కాటినిక్ లేదా నాన్–అయానిక్ రకంగా వర్గీకరించబడతాయి. ఉదాహరణకు, సబ్బులో అకార్బాక్సిలేట్ అయాన్ ఉంటుంది కాబట్టి సబ్బు అయానిక్ రకం (టేబుల్ 8.5.1) సింథటిక్ డిటర్జెంట్లు సల్ఫోనేట్ అయాన్ను కలిగి ఉంటాయి కాబట్టి అవి అయానిక్ రకంగా కూడా వర్గీకరించబడ్డాయి. యానయానిక్ రకాలు సర్వసాధారణం. అయినప్పటికీ, కాటినిక్ మరియు నాన్–అయానిక్ డిటర్జెంట్లు కూడా అంటారు.

#### సబ్బులు

సబ్బులు పొదవాటి గొలుసు కొవ్వు ఆమ్లాల సోడియం లేదా పొటాషియం లవణాలు. ఈ కొవ్వు ఆమ్లాలు గ్లిజరైడ్స్ రూపంలో నూనె ఇసుక కొవ్వులలో ఉంటాయి. ఆయిల్ ఇసుక కొవ్వులలో ఉండే గ్లిజరైడ్లు గ్లిసరాల్ మరియు లాంగ్ చైన్ కార్బాక్సిలిక్ యాసిడ్ ఈస్టర్లు, ఉదాహరణకు పాల్మిటిక్ యాసిడ్ మరియు స్టెరిక్ యాసిడ్.

Oil or fat			glycerol		
$CH_2 - O - COR$			$CH_2 - OH$		
CH – O – COR	+ 3NaOH	$\rightarrow$	CH ₂ – OH	+	3 RCOONa Soap
CH ₂ - O - COR			CH ₂ – OH		

#### (where R=long chain alkyl group containing 11to17carbon atoms)

# సింథటిక్ డిటర్జెంట్ల

సింథటిక్ డిటర్జెంట్లు సబ్బుల వలె క్లీనింగ్ ఏజెంట్లగా ఉపయోగించబడతాయి. రసాయనికంగా, డిటర్జెంట్ల దీర్ఘ– గొలుసు ఆల్రైల్ హైద్రోజన్ సల్ఫేట్ యొక్క సోడియం లవణాలు లేదా దీర్ఘ–గొలుసు ఆల్రైల్ బెంజీన్ సల్ఫోనికాసిడ్ల సోడియం లవణాలు. (సబ్బు అనేది పొడవాటి గొలుసు కొవ్వు ఆమ్లం యొక్క సోడియం పొటాషియం ఉప్పు అని గుర్తుంచుకోండి.)



డిటర్టైంట్ అణువులు సబ్బు అణువుల మాదిరిగానే ఉంటాయి, అవి చమురులో కరిగే (లిపోఫిలిక్) కార్బన్ అణువుల పొడవైన గొలుసు మరియు (పోలార్) (హైద్రోఫిలిక్) నీటిలో కరిగే భాగాన్ని కలిగి ఉంటాయి. ఉదాహరణకు, సోడియం లారిల్ సల్ఫేట్ (C₁₂H₂₅-O-SO₃Na) యొక్క ఆల్రైల్చెయిన్ వంటి 12 కార్బన్లను కలిగి ఉంటుంది. పొడవైన కార్బన్ గొలుసు చమురు-కరిగే (లిపోఫిలిక్) భాగం మరియు సల్ఫేట్ (పోలార్) (హైద్రోఫిలిక్) భాగం, ఇది అణువును నీటిలో కరిగేలా చేస్తుంది. నీటిలో కరిగే భాగాన్ని నీటిలో కరిగే తల అని మరియు కార్బన్ అణువుల పొడవైన గొలుసును మట్టిలో కరిగే తోకగా సూచిస్తారు.



బేబుల్ 32.2: బయో–డిగ్రేడబిలిటీ మరియు సబ్బుల తరగతి మరియు కొన్ని సింథటిక్ డిటర్జెంట్లు

Detergent	Class	Polar Group	Bio-degradable
Soaps	anionic	Carboxylate	100%
Branched alkyl benzene sulphonate	anionic	Sulphonate	50-60%
Linear alkyl benzene sulphonate	anionic	Sulphonate	90%
Lauryl alcohol	anionic	Sulphate	100%

### ఇంటెక్న్ ప్రశ్నలు 32.3

సబ్బులలో క్రియాశీలక భాగం ఏది?
 సబ్బుల తయారీకి ఉపయోగించే ముడి పదార్ధాలు ఏమిటి?
 సబ్బు అణువులో ద్రువ భాగం ఏది?
 సంధటిక్ డిటర్జెంట్ మాలిక్యూల్లలో ద్రువ భాగం (హైద్రోఫిలిక్) అంటే ఏమిటి?
 సబ్బు అణువులోని నూనెలో కరిగే (లిపోఫిలిక్) భాగం ఏది?

#### **32.10 రాకెట్ ఇంధనాలు**

ఉపగ్రహాలను ప్రయోగించడానికి మరియు క్షిపణులను ప్రయోగించడానికి అంతరిక్ష రాకెట్లను ఉపయోగిస్తారు. ఈ రాకెట్లు ఫైర్–వర్క్ రాకెట్ యొక్క అదే సూత్రంపై న్యూటన్ యొక్క మూడవ చలన నియమాన్ని పనిచేస్తాయి. అయినప్పటికీ, వాటి రూపకల్పన మరియు ఇంధనాలు మరింత క్లిష్టంగా ఉంటాయి.

### రాకెట్ ఇంధనాలు భిన్నంగా ఉంటాయి

రాకెట్లలో ఉపయోగించే ఇంధనాలు కార్లు, ట్రక్కులు లేదా విమానాలలో ఉపయోగించే ఇంధనాల నుండి చాలా భిన్నంగా ఉంటాయి. రాకెట్ ఇంధనాలు మరియు ఇతర సాంప్రదాయ ఇంధనాల మధ్య ప్రధాన తేదాలు క్రిందివి.

# 1. రాకెట్ ఇంధనం రాకెట్లో చిన్న స్థలాన్ని ఆక్రమించాలి.

– ఇంధనం పెద్ద స్థలాన్ని ఆక్రమిస్తే, రాకెట్ చాలా పెద్దదిగా మరియు భారీగా మారుతుంది. అంతరిక్షంలోకి వెళ్లేందుకు ఇది అధిక వేగాన్ని పొందలేకపోవచ్చు.

 ఇంధనాన్ని కాల్చదానికి రాకెట్ తప్పనిసరిగా ఆక్సిజన్ (లేదా ఆక్సీకరణ ఏజెంట్ల) తగినంత సరఫరాను కలిగి ఉందాలి.

– స్పేస్ రాకెట్ అంతరిక్షంలో ఆక్సిజన్ తక్కువగా ఉన్న ప్రాంతాల గుండా వెళుతుంది (భూమికి దూరంగా అంతరిక్షంలోకి వెళ్లే కొద్దీ గాలి అరుదుగా మారుతుంది).

### రాకెట్ (పొపెల్లెంట్ల వర్గీకరణ

రాకెట్ ప్రొపెల్లెంట్లు వాటి భౌతిక స్థితి ఆధారంగా వర్గీకరించబద్దాయి. రాకెట్ ప్రొపెల్లెంట్ల యొక్క ప్రధాన తరగతులు: 1. సాలిడ్ ప్రొపెల్లెంట్స్ 2. లిక్విడ్ ప్రొపెల్లెంట్స్ 3. హైబిడ్ ప్రొపెల్లెంట్స్

### 1. సారిడ్ ప్రొపెల్లెంట్స్

సాలిడ్ ట్రొపెల్లెంట్లు సాధారణంగా ఉపయోగించే రాకెట్ ట్రొపెల్లెంట్లు. వీటిని సాలిడ్ కాంపోజిట్ ట్రొపెల్లెంట్స్ అని కూడా అంటారు. ఇది ఘన ఇంధనం మరియు ఘన ఆక్సిడైజర్ మిశ్రమం.

పాలియురేతేన్ లేదా పాలీబుటాడైన్ వంటి పాలీమెరిక్ ఘన పదార్థాలను ఇంధనంగా ఉపయోగిస్తారు. ఘన అమ్మోనియం పెర్కోరేట్ను ఆక్సిడైజర్గా ఉపయోగిస్తారు. ప్రొపెల్లెంట్ పనితీరును మెరుగుపరచదానికి చక్కగా విభజించబడిన అల్యూమినియం లేదా మెగ్నీషియం కూడా జోడించబడుతుంది.

# డబుల్ బేస్ (పొపెల్లెంట్స్

మరొక రకమైన సాలిడ్ ట్రొపెల్లెంట్ డబుల్ బేస్ ట్రొపెల్లెంట్. ఇందులో నైట్రోగ్లిజరిన్ మరియు నైట్రోసెల్యులోజ్ ఉంటాయి. నైట్రో సెల్యులోజ్ మరియు నైట్రో గ్లిసరిన్ రెండూ వాటి నైట్రో గూపులలో ఇంధన దహనానికి తోడ్పడటానికి తగినంత ఆక్సిజన్ను కలిగి ఉంటాయి. దీనికి ప్రత్యేక ఆక్సిడైజర్ అవసరం లేదు.

ఇగ్నిషన్పై సాలిడ్ ప్రొపెల్లెంట్లను ముందుగా నిర్ణయించిన రేటుతో కాల్చేలా చేయవచ్చు. సాలిడ్ ప్రొపెల్లెంట్స్తో సమస్య ఏమిటంటే, ఒకసారి మండించిన తర్వాత అవి మండుతూనే ఉంటాయి మరియు జ్వలనను ఆపడం లేదా జ్వలన రేటును మార్చడం సాధ్యం కాదు.

### 2. లిక్విడ్ పొపెల్లెంట్స్

లిక్విడ్ ట్రొపెల్లెంట్లు ద్రవ ఇంధనం మరియు ద్రవ ఆక్సిడైజర్ కలయికను ఉపయోగిస్తాయి.లిక్విడ్ ట్రొపెల్లెంట్లు, సాధారణంగా, ఘన ట్రొపెల్లెంట్ల కంటే ఎక్కువ థ్రస్ట్ ఇస్తాయి. ట్రొపెల్లెంట్ యొక్క ప్రవాహాన్ని ఆన్ మరియు ఆఫ్ చేయడం ద్వారా థ్రస్ట్ ను నియంత్రించవచ్చు. ఇంధనం యొక్క ప్రవాహం రేటును నియంత్రించడం కూడా థ్రస్ట్ ను నియంత్రించవచ్చు.

### లిక్విడ్ ప్రొపెల్లెంట్లు రెండు రకాలు. ఇవి:

ఎ) ద్వి–ద్రవ చోదకాలు బి) మోనో–ప్రొపెల్లెంట్లు

(ఎ) ద్వి–ద్రవ చోదకాలు

ద్వి–ద్రవ ప్రొపెల్లెంట్లలో ద్రవ ఇంధనం మరియు ద్రవ ఆక్సిదైజర్ ఉంటాయి. ద్రవ ఇంధనం మరియు ద్రవ అక్సిదైజర్ ప్రత్యేక ట్యాంకుల్లో ఉంచబడతాయి. వీటిని ప్రత్యేక పైప్లైన్ ద్వారా ఇగ్నిషన్ ఛాంబర్కు తీసుకువెళతారు. ద్రవ ఆక్సిజన్ను ఆక్సిదైజర్గా మరియు ద్రవ హైద్రోజన్ను ఇంధనంగా ఉపయోగించినట్లయితే, చాలా తక్కువ ఉష్ణోగ్రతలు నిర్వహించబడతాయి. అందువల్ల, పైపుల ద్వారా వాటిని పంప్ చేయదానికి ప్రత్యేక ఇంజిన్లు ఉపయోగించబడతాయి. అత్యంత తక్కువ ఉష్ణోగ్రతల వద్ద పనిచేసే ఇంజన్లను క్రయోజెనిక్ ఇంజన్లు అంటారు. క్రయోజెనిక్ ఇంజిన్లాను తయారు చేయగల సామర్థ్యం చాలా తక్కువ దేశాలకు ఉంది.

సాధారణంగా ఉపయోగించే ద్రవ ఇంధనాలు కిరోసిన్, ఆల్కహాల్, హైద్రాజైన్లు, ద్రవ హైద్రోజన్ మొదలైనవి. సాధారణంగా ఉపయోగించే ఆక్సిదైజర్లు లిక్విడ్ ఆక్సిజన్, నైటిక్ యాసిడ్, నైటోజన్ టెట్రాక్ఫైడ్ (N2O4).

# (బి) మోనో-(పొపెల్లెంట్స్

మోనో–ప్రొపెల్లెంట్లు ఒకే రసాయన సమ్మేళనాన్ని కలిగి ఉంటాయి. కుళ్ళిన లేదా జ్వలన మీద ఇవి పెద్ద పరిమాణంలో వాయువులను ఉత్పత్తి చేస్తాయి.

హైద్రాజైన్ (N2H4) మోనో –ప్రొపెల్లెంట్గా ఉపయోగించవచ్చు. ఉత్రేరక కుళ్ళిన హైద్రాజైన్ నైటోజన్ మరియు హైద్రోజన్ వాయువును ఉత్పత్తి చేస్తుంది. మోనోప్రొపెల్లెంట్ యొక్క కొన్ని ఇతర ఉదాహరణలు నైటో మీథేన్, మిథైలెనినిట్రేట్, హైద్రోజన్ పెరాక్ష్పెడ్ మొదలైనవి.

### 3. హైబిడ్ పొపెల్లెంట్స్

హైబ్రిడ్ ట్రొపెల్లెంట్స్ అంటే ఘన ఇంధనం మరియు లిక్విడ్ ఆక్సిడైజర్ ఉంటాయి. ఉదాహరణకు, యాక్రిలిక్ రబ్బరు మిశ్రమాన్ని ఇంధనంగానూ, ద్రవ నైటోజన్ టెట్రాక్ఫైడ్ (N2O4)ను ఆక్సిడైజర్గానూ ఉపయోగిస్తారు. వివిధ రాకెట్లలో ఉపయోగించే ట్రొపెల్లెంట్లు

వివిధ అంతరిక్ష కార్యక్రమాలలో వివిధ ఇంధనాలు ఉపయోగించబడ్డాయి. కొన్ని రాకెట్లు జ్వలన యొక్క వివిధ దశలలో వివిధ ఇంధనాలను ఉపయోగించవచ్చు. భారతదేశంలో SLV–3 (స్పేస్ లాంచ్ వెహికల్) మరియు ASLV (అగ్మెంటెడ్ స్పేస్ లాంచ్ వెహికల్) రాకెట్లు మిశ్రమ ఘన చోదకాలను ఉపయోగించాయి.

PSVL (పోలార్ శాటిలైట్ లాంచ్ వెహికల్) మొదటి మరియు మూడవ దశలలో సాలిడ్ ప్రొపెల్లెంట్లను ఉపయోగించింది. రెండవ దశలో లిక్విడ్ ప్రొపెల్లెంట్ నైట్రోజన్ బెట్రాఆక్ష్రెడ్ (N₂O₄)ను ఆక్సిడైజర్గా మరియు అన్సిమెట్రిక్ డైమిథైల్ హైదాజైన్ (UDMH) ఇంధనంగా ఉపయోగించబడుతుంది. నాల్గవ దశలో N₂O₄ మరియు మోనోమిథైల్ హైదాజైన్ (MMH) ఇంధనంగా ఉపయోగించబడుతుంది. పీఎస్ఎల్వీ సామర్థ్యం కలిగిన ఆరు దేశాల్లో భారత్ ఒకటి. మిగతా ఐదు దేశాలు అమెరికా, రష్యా, చైనా, ఫ్రాన్స్ మరియు జపాన్.





Unsymmetrical dimethyl hydrazine UDMH

mono methyl hydrazine MMH

#### INTEXT QUESTIONS:

- 1. న్యూటన్ యొక్క చలన నియమాలలో ఏది రాకెట్ల కదలికను నియంత్రిస్తుంది?
- 2. రాకెట్ ఇంధనాలు ఆటోమొబైల్స్లో ఉపయోగించే ఇంధనాల నుండి ఎందుకు భిన్నంగా ఉంటాయి?
- 3. రాకెట్ ప్రొపెల్లెంట్ల యొక్క ప్రధాన తరగతులు ఏమిటి?
- 4. బాలిస్టిక్ క్షిపణులలో ఉపయోగించే ఒక ఆక్సిడైజర్ పేరు పెట్టండి.

# మీరు ఏమి నేర్చుకున్నారు:

- పెట్రోకెమికల్స్ యొక్క నిర్వచనం
- ఫ్లో షీట్ రేఖాచిత్రంతో వివిధ తరాల పెట్రోకెమికల్స్
- పెట్రోకెమికల్స్ యొక్క వివిధ ఉదాహరణలు
- వివిధ పెట్రోకెమికల్స్ ఉపయోగాలు తెలుసుకున్నారు
- భారతదేశంలో పెట్రోకెమికల్స్ స్థితి గురించి తెలుసుకున్నారు.
- సబ్బులు మరియు డిటర్జెంట్ల మధ్య వ్యత్యాసం
- సబ్బు మరియు డిటర్జెంట్ అణువుల లిపోఫిలిక్ మరియు హైద్రోఫిలిక్ భాగాలు
- సబ్బుల కంటే డిటర్జెంట్ల ప్రయోజనాలు మరియు అప్రయోజనాలు
- రాకెట్ ప్రొపెల్లెంట్ల వర్గీకరణ
- రాకెట్ ప్రొపెల్లెంట్ల యొక్క వివిధ తరగతుల రసాయన కూర్పు
- ఇండియా స్పేస్ ప్రోగ్రామ్లలో ఉపయోగించే వివిధ ప్రొపెల్లెంట్లు.

#### TERMINAL EXERCISE:

- 1. సహజ వాయువులో ఉండే ప్రధాన హైద్రోకార్బన్ భాగం ఏది?
- 2. వివిధ పెట్రోకెమికల్స్ తయారీలో ఉపయోగించే సాధారణ ఫీడ్ స్టాక్స్ ఏమిటి?
- 3. "ఆల్కీన్స్ (ఒలేఫిన్లు), బెంజీన్, టోలున్ మరియు జిలీన్స్ ప్రాథమిక పెట్రోకెమికల్స్. "ఈ ప్రకటన నిజమా లేదా అబద్దమా?
- 4. కార్బన్ బ్లాక్ యొక్క ప్రధాన ఉపయోగాలు ఏమిటి?
- 5. మిథైల్ ఆల్మహాల్ నుండి తయారయ్యే ప్రధాన రసాయనాలు ఏమిటి?
- 6. ఇథిలీన్ నుండి ఇథైలాల్కహాల్ ఎలా తయారవుతుంది?
- 7. ఇథిలీన్ నుండి వినైల్ క్లోరైడ్ ఎలా తయారవుతుంది?
- 8. స్టైరిస్ యొక్క పాలిమరైజేషన్ నుండి పొందిన పాలిమర్ పేరు ఏమిటి?
- 9. పారా–జిలీన్ ఆక్సీకరణం ద్వారా లభించే డైకార్బాక్సిలిక్ ఆమ్లం పేరును వ్రాయండి?
- 10. సింథటిక్ డిటర్టైంట్ల తయారీకి ఉపయోగించే సంస్కరించబడిన నాప్తా నుండి పొందిన ఒక ప్రాథమిక పెట్రోకెమికల్ పేరు చెప్పండి?
- 11. రాకెట్లలో ఉపయోగించే ఇంధనాలు ఇళ్లలో ఉపయోగించే ఇంధనాల కంటే ఎందుకు భిన్నంగా ఉంటాయి?
- 12. డబుల్–బేస్ రాకెట్ ప్రొపెల్లెంట్ అంటే ఏమిటి?
- 13. క్రయోజెనిక్ ఇంజన్లు అంటే ఏమిటి?

#### ANSWERS

#### 32.1

 పెట్రో కెమికల్స్ అనేవి ప్రత్యక్షంగానూ లేదా పరోక్షంగానూ పెట్రో లియం లేదా వాటి ఉత్పత్తుల నుంచి తయారు కాబడినవి.

- 2. పెట్రోకెమికల్ తయారీ కొరకు వినియోగించే ప్రాథమిక పదార్థాలను ఫీడ్ స్టాక్ అంటారు .
- 3. నాచురల్ గ్యాస్ మరియు నాప్త.
- 4. దౌన్[స్టీమ్ పెట్రోకెమికల్ అంటే పెట్రోకెమికల్, ఇది తరువాతి దశలో ఏర్పడుతుంది.
- 5 . మిథైల్ క్లోరైడ్ మొదటి తరం పెట్రోకెమికల్ మరియు మిథైల్ ఆల్కహాల్ రెండవది.

#### 32.2

1. ఫీడ్స్టాక్ నుండి నేరుగా పొందే పెట్రోకెమిల్స్ను (పైమరీ పెట్రోకెమికల్స్ అంటారు.

- 2. మిథైల్ ఆల్కహాల్, మిథైల్ క్లోరైడ్, కార్బన్ బ్లాక్.
- 3. ఐసోటాపైల్ ఆల్కహాల్, పాలీటాపైలిన్, క్యూమెన్ మరియు గ్లిసరాల్.
- 4. వినైల్ క్లోరైడ్, వినైల్ అసిటేట్, అక్రిలో నిటైల్ మరియు ఎసిటాల్దిహైడ్.

5. ఇథైల్ బెంజీన్, క్లోరో బెంజీన్, నైట్రోబెంజీన్, సైక్లో హెక్సేన్, లీనియర్ ఆల్రైల్ బెంజీన్ (LAB) మరియు బ్రాంచ్డ్ ఆల్రైల్ బెంజీన్(BAB)

# 32 b పాలిమర్స్

మనం పాలిమర్ యుగంలో ఉన్నామని చెప్పుకోవడం తప్పుకాదనే స్థాయిలో నేడు పాలిమర్లు మన జీవన విధానాన్ని ప్రభావితం చేశాయి. ఈ రోజుల్లో పాలిమర్లు సాధారణ గృహూపకరణాలు, ఆటోమొబైల్స్, బట్టలు, ఫర్నిచర్ మొదలైన వాటి నుండి అంతరిక్ష విమానం మరియు బయోమెడికల్ మరియు సర్జికల్ భాగాల వరకు విస్త్రతమైన ఉ పయోగాలను కనుగొంటాయి. పాలీమెరిక్ పదార్థాలు తక్కువ బరువు కలిగి ఉంటాయి కానీ అద్భుతమైన యాంత్రిక లక్షణాలను కలిగి ఉంటాయి మరియు వివిధ పద్ధతుల ద్వారా సులభంగా ప్రాసెస్ చేయవచ్చు. ఈ పాఠంలో మీరు పాలిమర్లు, వాటి రకాలు మరియు కొన్ని ముఖ్యమైనసింథటిక్ మరియు సహజమైన పాలిమర్ల గురించి మరింత తెలుసుకుంటారు. తదుపరి పాఠంలో మీరు రంగులు, పెయింట్లు మరియు పిగ్మెంట్ల వంటి రంగుల పదార్థాల గురించి నేర్చుకుంటారు.

#### లక్ష్యాలు

ఈ పాఠాన్ని చదివిన తర్వాత మీరు వీటిని చేయగలరు.

- మోనోమర్లు, పాలిమర్, హూమోపాలిమర్, కోపాలిమర్ మరియు పాలిమరైజేషన్ వంటి పదాలను వివరించడం.
- పాలిమర్లను వాటి మూలం, పరమాణు శక్తులు మరియు తయారీ పద్ధతి ఆధారంగా వివరించడం.
- సహజ మరియు సింథటిక్ రబ్బరు వంటి పాలిమర్ల మోనోమర్లను జాబితా చేయడం.
- పాలిథిన్, పాలీస్టైరిన్, బునా−S, PMMA, PVC, బెప్లాన్, పాలిస్టర్, Nylon66 మరియు Nylon6 వంటి పాలిమర్ యొక్క మోనోమర్లను జాబితా చేయడం.
- బయోడిగ్రేడబుల్ పాలిమర్లను నిర్వచించడం మరియు
- కొన్ని బయోపాలిమర్ల ఉదాహరణలను వివరించడం.

33.1 పారిమర్స్ అంటే ఏమిటి



పాలిమర్లు అనేవి మోనోమర్లు అని పిలువబడే ఒకే లేదా వివిధ రకాల చిన్న అణువుల మధ్య ఇంటమోలిక్యులర్ లింకేజ్ ద్వారా ఏర్పడిన పెద్ద అణువులు. ఉదాహరణకు, పాలిథిస్. –(–CH-CH-)n—అనేది ఈథీస్ యొక్క పాలిమర్. పాలిమర్ అనేది మోనోమర్లు అని పిలువబడే రెండు లేదా అంతకంటే ఎక్కువ చిన్న అణువులను అనుసంధానించడం ద్వారా ఏర్పడిన అధిక మాలిక్యులర్ మాస్ అణువు. మోనోమర్లు అనేవి చిన్న అణువులు, ఇవి పాలిమర్లు అని పిలువబడే పెద్ద అణువులను ఏర్పరచదానికి తమలో తాము లింక్ చేయగలవు. కొన్ని పాలిమర్లలో ఒకటి కంటే ఎక్కువ రకాల మోనోమర్లు ఒకదానితో ఒకటి కలిపి పాలిమర్ను అందిస్తాయి. ఉదాహరణకు, ఒక పాలిమర్ను రెండు మోనోమర్లు (A) మరియు (B) నుండి పొందవచ్చు. అవి. -A-B-A-B లేదా – (-A-B-)n-



#### 33.2 పారిమర్ల రకాలు

పునరావృతమయ్యే నిర్మాణాత్మక యూనిట్ల (మోనోమర్లు) స్వభావాన్ని బట్టి, పాలిమర్లు హూమోపాలిమర్లు మరియు కోపాలిమర్లు అనే రెండు విస్తృత వర్గాలుగా విభజించబడ్డాయి.

### (ఎ) హూమోపారిమర్

ఒకే రకమైన మోనోమర్ల నుండి ఏర్పడిన పాలిమర్ను హూమోపాలిమర్ అంటారు. పాలిథిన్ - (-CH-CH-)n-అనేది హూమోపాలిమర్కు ఉదాహరణ.

#### (బి) కో-పాలిమర్

ఒకటి కంటే ఎక్కువ రకాల మోనోమర్ యూనిట్ల నుండి ఏర్పడిన పాలిమర్ను కోపాలిమర్ లేదా మిశ్రమ పాలిమర్ అంటారు. ఉదాహరణకు, 1,3–బ్యూటాడిన్ (CH₂=CH-CH=CH₂) మరియు స్టైరిన్ (C₆H₅ CH=CH₂) నుండి ఏర్పడిన Buna-S రబ్బరు కోపాలిమర్కు ఉదాహరణ.

#### 33.3 పాలిమరైజేషన్

మోనోమర్లను అనుసంధానించే ప్రక్రియను పాలిమరైజేషన్ అంటారు.

పాలిమరైజేషన్ ఇలా సూచించబడుతుంది:

M + M M-M M-(-M-)n-M

మోనోమర్లు డైమర్ పాలిమర్

#### 33.3 పాలిమరైజేషన్ రకాలు

ట్రతిచర్య విధానంపై ఆధారపడి, పాలిమరైజేషన్ ఇలా వర్గీకరించబడింది:

ఎ) అడిషన్ పాలిమరైజేషన్ బి) కండెన్సేషన్ పాలిమరైజేషన్

#### ఎ) అడిషన్ పాలిమరెజేషన్:

ఈ ప్రక్రియలో రియాక్షన్ మెకానిజం ద్వారా పెరుగుతున్న గొలుసును రూపొందించడానికి మోనోమర్ యూనిట్ల జోడింపు ఉంటుంది. ఈ కారణంగానే ఈ ప్రక్రియను చైన్ గ్రోత్ పాలిమరైజేషన్ అని కూడా అంటారు.

#### Initiation

$$R-O-O-R \rightarrow 2R-O$$

$$R-O \longrightarrow C = C \rightarrow R-O-C - C - C$$

Propagation

Termination

$$\begin{array}{c} R-O-\overset{i}{C}-\overset{i}{C}\overset{i}{C}-\overset{i}{C}\overset{j}{C}-\overset{i}{C}\overset{i}{C}-\overset{i}{C}\overset{i}{C}-\overset{i}{C}\overset{i}{C}-\overset{i}{C}\overset{i}{C}\overset{i}{C}-\overset{i}{C}\overset{i}{C}-\overset{i}{C}\overset{i}{C}-\overset{i}{C}-\overset{i}{C}\overset{i}{C}-\overset{i}{C}-\overset{i}{C}\overset{i}{C}\overset{i}{C}-\overset{i}{C}-\overset{i}{C}\overset{i}{C}\overset{i}{C}-\overset{i}{C}-\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}-\overset{i}{C}-\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}-\overset{i}{C}-\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}-\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}{C}\overset{i}$$

**ఇనిషియేషన్:** క్రీ రాడికల్స్ వంటి కొన్ని రియాక్టివ్ జాతులను అందించే ఉత్రేరకాన్ని (ఇనిషియేటర్ అని పిలుస్తారు) జోడించడం ద్వారా అదనంగా పాలిమరైజేషన్ సాధించబడుతుంది.

గొలుసు ప్రచారం: (Chain propagation): ఈ క్రీ రాడికల్స్ (R) అప్పుడు అసంతృప్త మోనోమర్పై దాడి చేసి కొత్త
ట్రీ రాడికల్ను ఏర్పరుస్తుంది, ఇది వరుసగా మోనోమర్**లను జోడిస్తుంది మరియు తద్వారా గొలుసును పెంచుతుంది.** గొలుసు ముగింపు:(Chain termination): రెండు పెరుగుతున్న గొలుసుల చివరి ముగింపు పాలిమర్**కు దారి** తీస్తుంది.

ఉదాహరణ: Nylon66, పారిమైద్ల పారిమర్

Nylon threads



#### ఎ) కండెన్పేషన్ పాలిమరైజేషన్:

దీనిలో, మోనోమర్లు H₂O, ROH లేదా NH₃ వంటి చిన్న అణువుల తొలగింపుతో మిళితం అవుతాయి. ప్రతిచర్యను (స్టెప్ గ్రోత్) కండెన్సేషన్ పాలిమరైజేషన్ అంటారు. మరియు ఏర్పడిన ఉత్పత్తిని కండెన్సేషన్ పాలిమర్ అంటారు. ప్రక్రియలో ఉత్పత్తి అణువుల తొలగింపు ఉంటుంది. కాబట్టి పాలిమర్ యొక్క పరమాణు ద్రవ్యరాశి మోనోమర్ యూనిట్ల యొక్క సమగ్ర గుణకం కాదు. ఉదాహరణకు పాలిస్టర్ లేదా టెరిలీన్ అనేది ఇథిలీన్ మరియు టెర్ఫాలిక్ యాసిడ్ యొక్క సంక్షేపణ పాలిమర్.



Poly (ethylene terphthalate) or (Terylene)



Terylen fabric

పాలిమర్లను తయారు చేసే ఈ రెండు ప్రక్రియలు ఒకదానికొకటి వేరు చేసే అనేక లక్షణాలను కలిగి ఉంటాయి. ఇవి (టేబుల్ 33.1)లో చూపబద్తాయి.

Addition Polymerization	Condensation polymerization(Polycondensation)
1. Involves unsaturated	1. Involves substances with at least
monomer like ethylene, vinyl	2 functional groups like ethylene glycol (2-OH
chloride, styrene etc.	groups), adipic acid(2-COOH groups).
2. Fast addition of monomers	2. Step-wise slow addition.
3. At any instant, only monomer	3. No monomer Mixtures of dimers, tri mers
and polymers are present.	and tetra mers etc. are present
4. Initiator is necessary to	4. Catalyst is not necessary.

catalyse the polymerization.

5. No small molecules are 5. Small molecules like H₂O, HCl

eliminated.

6. Polymers made are, for6. Polymer made are, for example, terylene, nylon,example, polyethene, polyFormaldehyde - resins, silicones.

propylene, polybutadiene, poly

vinylchloride.

#### **INTEXT QUESTIONS:**

నిర్వచించండి a) మోనోమర్ b) పాలిమర్

2. ప్రతిదానికి ఒక ఉదాహరణ వ్రాయండి:

i) అదిషన్ పాలిమరైజేషన్ ii) కండెన్సేషన్ పాలిమరైజేషన్

.....

3. హూమోపాలిమర్లు మరియు కోపాలిమర్ల మధ్య తేదాను గుర్తించండి.

.....

4. టెరిలీన్ మరియు నైలాన్ –66 యొక్క మోనోమర్లను వ్రాయండి.

.....

### పాలిమర్ల వర్గీకరణ

పాలిమర్లను అనేక విధాలుగా వర్గీకరించవచ్చు. వీటిలో కొన్ని వాటి లక్షణాలు మరియు ఉపయోగాల క్రమబద్ధమైన పరిశోధన కోసం క్రింద చర్చించబద్దాయి.

(a) మూలం ఆధారంగా పారిమర్ల వర్గీకరణ.

మూలం ఆధారంగా, పాలిమర్లు ఇలా వర్గీకరించబద్దాయి:

1. సహజ పాలిమర్ 2. సింథటిక్ పాలిమర్లు

1. సహజ పారిమర్లు:

ప్రకృతి (మొక్కలు మరియు జంతువులు) నుండి పొందిన పాలిమర్లను సహజ పాలిమర్లు అంటారు. స్పార్చ్, సెల్యులోజ్, సహజ రబ్బరు, ప్రొటీన్లు మొదలైనవి కొన్ని ఉదాహరణలు.

#### 2. సింథటిక్ పాలిమర్లు:

ప్రయోగశాలలో తయారు చేసే పాలిమర్లను సింథటిక్ పాలిమర్లు అంటారు. వీటిని మానవ నిర్మిత పాలిమర్లు అని కూడా అంటారు. పాలిథిన్, PVC నైలాన్, బెఫ్లాన్, బేకలైట్, బెరిలిన్, సింథటిక్ రబ్బరు మొదలైనవి సాధారణ ఉదాహరణలు.

### (b) నిర్మాణం ఆధారంగా పారిమర్ల వర్గీకరణ

పాలిమర్ల నిర్మాణం ఆధారంగా, వీటిని ఇలా వర్గీకరించవచ్చు:

1. లీనియర్ పాలిమర్లు 2. బ్రాంచ్డ్ చైన్ పాలిమర్లు 3. క్రాస్-లింక్డ్ పాలిమర్లు.

### 

ఇవి పాలిమర్లు, వీటిలో మోనోమెరిక్ యూనిట్లు సరళ గొలుసుల నుండి ఒకదానితో ఒకటి అనుసంధానించబడి ఉంటాయి. ఈ లీనియర్ పాలిమర్లు బాగా ప్యాక్ చేయబడ్దాయి (Fig. 33.1) అందువలన, అధిక సాంద్రతలు, అధిక తన్యత కలిగి ఉంటాయి. (లాగడం) బలం మరియు అధిక ద్రవీభవన పాయింట్లు. ఉదాహరణకు, పాలిథిలిన్, నైలాన్లు మరియు పాలిస్టర్లు మరియు లీనియర్ పాలిమర్లకు ఉదాహరణలు.

### 2. బ్రాంచ్డ్ చైన్ పాలిమర్లు:

ఇవి పాలిమర్**లు**, దీనిలో మోనోమర్లు సైడ్ చెయిన్లు లేదా వేర్వేరు పొడవుల శాఖలతో పొడవైన గొలుసును ఏర్పరుస్తాయి (Fig. 33.2). ఈ బ్రాంచ్డ్ చైన్స్ పాలిమర్లు సక్రమంగా ప్యాక్ చేయబడి ఉంటాయి. మరియు అందువల్ల, అవి లీనియర్ పాలిమర్ల కంటే తక్కువ తన్యత బలం మరియు మెట్లింగ్ పాయింట్లను కలిగి ఉంటాయి. ఉదాహరణకు, తక్కువ సాంద్రత కలిగిన పాలిథిన్, గైకోజెన్, స్టార్చ్ మొదలైనవి.

### 3. క్రాస్-లింక్డ్ పాలిమర్లు:

ఇవి త్రిమితీయ నెట్వర్క్ రూపొందించడానికి పొడవాటి పాలిమర్ గొలుసు పరస్పరం అనుసంధానించబడిన పాలిమర్లు. నెట్వర్క్ నిర్మాణం కారణంగా ఈ పాలిమర్లు గట్టిగా, దృధంగా మరియు పెళుసుగా ఉంటాయి. (Fig. 33.3) బ్యాక్లైట్, మెలమైన్ మరియు ఫార్మాల్డిహైడ్ రెసిన్ ఈ రకానికి కొన్ని ఉదాహరణలు.



Fig. 33.1: Linear Polymers

Fig. 33.2: Branched Chain Polymers



Fig. 33.3: Cross Linked Polymers

### సి) పరమాణు బలాల ఆధారంగా పాలిమర్ల వర్గీకరణ

మోనోమర్ అణువుల మధ్య అంతర పరమాణు శక్తులపై ఆధారపడి, పాలిమర్లలు నాలుగు రకాలుగా వర్గీకరించబద్దాయి.

1. ఎలాస్టోమర్ 2.ఫైబర్స్ 3. థర్మోప్లాస్టిక్స్ 4. థర్మోసెట్టింగ్

### 1. ఎలాస్టోమర్లు:

ఎలాస్టోమర్ల విషయంలో పారిమర్ గొలుసులు బలహీనమైన వాండర్ వాల్స్ శక్తులతో కరిసి ఉంటాయి. బలహీనమైన శక్తుల కారణంగా, పారిమర్లను చిన్న ఒత్తిడిని వర్తింపజేయడం పారిమర్లను చిన్న ఒత్తిడిని వర్తింపజేయడం ద్వారా సులభంగా విస్తరించవచ్చు. మరియు ఒత్తిడిని తొలగించినప్పుడు అవి వాటి అసలు ఆకృతిని తిరిగి పొందుతాయి. గొలుసుల మధ్య కొన్ని 'క్రాస్ రింక్లు' ఉండటం దీనికి కారణం, ఇది వల్మనైజ్డ్ రబ్బరులో వలె బలాన్ని తొలగించిన తర్వాత దాని అసలు స్థానానికి తిరిగి రావడానికి పారిమర్కి సహాయపడుతుంది. ఎలాస్టోమర్ యొక్క అతి ముఖ్యమైన ఉదాహరణ సహజ రబ్బరు.

### పైబర్స్:

ఇవి గొలుసుల మధ్య బలమైన ఇంటర్మోలిక్యులర్ శక్తులను కలిగి ఉండే పాలిమర్లు. ఈ శక్తులు హైడ్రోజన్ బంధాలు లేదా డైపోల్–డైపోల్ పరస్పర చర్యలు. బలమైన శక్తుల కారణంగా, గొలుసులు దగ్గరగా ప్యాక్ చేయబడతాయి, వాటికి అధిక తన్యత బలం మరియు తక్కువ స్థితిస్థాపకత ఇస్తుంది. ఇవి పాలిమర్లను పొడవాటి, సన్నగా మరియు ఫైబర్ల వలె థ్రెడ్గా లాగవచ్చు మరియు అందువల్ల బట్టలలో అల్లవచ్చు. సాధారణ ఉదాహరణలు నైలాస్–66, డాక్రాన్, పట్టు మొదలైనవి.

# 3. థర్మోప్లాస్టిక్స్:

ఇవి చాలా తక్కువ క్రాస్ లింకేజీలు లేదా క్రాస్ లింకేజీలు లేని లీనియర్ పాలిమర్లు. పాలిమెరిక్ గొలుసులు బలహీనమైన వాండర్ వాల్ శక్తులచే పట్టుకొని ఒకదానిపై ఒకటి జారిపోతాయి. క్రాస్ లింకేజీలు లేకపోవడం వల్ల ఈ పాలిమర్లు వేడి చేయడంలో మృదువుగా ఉంటాయి మరియు శీతలీకరణపై గట్టిపడతాయి లేదా దృధంగా ఉంటాయి. కాబట్టి వాటిని ఏ ఆకారానికైనా అచ్చు వేయవచ్చు. పాలిథిన్, PVC, పాలీస్టైరిన్ అడిషన్ టైప్ థర్మోప్లాస్టిక్స్ మరియు టెరిలీన్, నైలోనార్ కండెన్సేషన్ టైప్ థర్మోప్లాస్టిక్స్.

### ప్లాస్టిసైజర్లు:

కొన్ని ప్లాస్టిక్లలు వేడి చేయడం వల్ల ఎక్కువ మెత్తబడవు. ప్లాస్టిసైజర్లు అని పిలువబడే కొన్ని సేంద్రీయ సమ్మేళనాలను జోడించడం ద్వారా వీటిని సులభంగా మృదువుగా చేయవచ్చు. ఉదాహరణకు, పాలీ వినైల్ క్లోరైడ్ (PVC) చాలా దృధంగా మరియు గట్టిగా ఉంటుంది, అయితే di-n-butyl phthalate% (ఒక ప్లాస్టిసైజర్) జోడించడం ద్వారా మృదువుగా తయారవుతుంది. కొన్ని ఇతర సాధారణ ప్లాస్టిసైజర్లు డయాకిల్ థాలేట్స్ మరియు క్రెసిల్ థాలేట్.

### 4. థర్మో సెట్టింగ్ పారిమర్లు:

సాధారణంగా థర్మో సెట్టింగ్ పాలిమర్ని మళ్లీ కరిగించి మళ్లీ అచ్చు వేయలేని ఘనపదార్థంగా శాశ్వతంగా అమర్చినప్పుడు ఒకసారి మాత్రమే వేడి చేయవచ్చు. థర్మో సెట్టింగ్ పాలిమర్లు సాపేక్షంగా తక్కువ మాలిక్యులర్ మాస్ సెమీ ఫ్లాయిడ్ పాలిమర్ల (పాలిమర్లు అని పిలుస్తారు) నుండి ఉత్పత్తి చేయబడతాయి, ఇవి వేడి చేయడం ద్వారా విస్త్రతమైన క్రాస్–లింకింగ్ను స్వయంగా అభివృద్ధి చేస్తాయి లేదా కొన్ని క్రాస్–లింకింగ్ ఏజెంట్లను జోడించడం ద్వారా ఫ్యూసిబుల్ మరియు కరగని హార్డ్ మాస్గా మారతాయి. క్రాస్–లింక్లు అణువులను ఉంచుతాయి, తద్వారా వేడి చేయడం వాటిని స్వేచ్ఛగా తరలించడానికి అనుమతించదు. అందువల్ల, థర్మో సెట్టింగ్ ప్లాస్టిసిస్ క్రాస్–లింక్డ్ మరియు శాశ్వతంగా దృధంగా ఉంటుంది. సాధారణ ఉదాహరణ బేకలైట్, మెలమైన్,

### ఫార్మాల్డిహైడ్ రెసిన్ మొదలైనవి.

థర్మో సెట్టింగ్ మరియు థర్మో ప్లాస్టిక్ పాలిమర్ల లక్షణాలలో కొన్ని ముఖ్యమైన వ్యత్యాసాలు టేబుల్ 32.2లో... Table 33.2: Distinction between Thermoplastic and Thermosetting polymers:

#### Thermoplastic

- 1. Linear polymers.
- 2. Weak vander Waals inter molecular forces and thussoften/melt on heating.
- Molten polymer can be moulded in desired shape. it can be remouldedby heating again
- Examples are polystyrene, PVC, SBR, Teflon, PMMA terylene.

#### **Thermosetting polymers**

- 1. Cross-linked polymers.
- 2. Chemical cross-linking make them infusible materials. Donot melt on heating.
- 3. Cross-linking is usually developed at the time of harden irreversibly.
- 4. Examples are Glyptals, epoxypolymers,3formaldehyde resins.

100

### INTEXT ప్రశ్నలు

1. ఉదాహరణలతో సహజ మరియు సింథటిక్ పాలిమర్లను నిర్వచించండి?

.....

2. క్రాస్ రింక్డ్ పారిమర్లు అంటే ఏమిటి? ఈ రకమైన ఉదాహరణను ఇవ్వండి.

.....

3. థర్మోప్లాస్టిక్ థర్మో సెట్టింగ్ పారిమర్ల నుండి ఎలా భిన్నంగా ఉంటుంది?

.....

 కింది పారిమర్లను ఇంటర్మాలిక్యులర్ శక్తుల పెరుగుతున్న క్రమంలో అమర్చండి. వాటిని అదనంగా మరియు కండెన్సేషన్ పారిమర్లుగా వర్గీకరించండి. నైలాన్−66, బునా−ఎస్, పారిథిన్.

.....

# 33.5 కొన్ని వాణిజ్యపరంగా ముఖ్యమైన పాలిమర్లు పాలీడీన్లు

రెందు దబుల్ బాంద్లతో అసంతృప్త హైదోకార్బన్ లేదా దైన్ (2 దబుల్ బాండ్ సమ్మేళనం) ప్రత్యామ్నాయ ఆల్కెస్తో పాలిమరైజ్ చేయబడినప్పుడు ఈ పాలిమర్లు పొందబడతాయి (ఈ ఆల్కెస్లు మరియు డైన్లు పెట్రోకెమికల్స్ అని మీరు పాఠం 32లో అధ్యయనం చేసారు). ఈ తరగతికి చెందిన పాలిమర్లు రబ్బర్లు లేదా ఎలాస్టోమర్. అవి సహజంగా లేదా కృత్రిమంగా ఉండవచ్చు. పర్యవసానంగా, మనకు సహజ రబ్బరు మరియు సింథటిక్ రబ్బరు ఉ న్నాయి.

1) సహజ రబ్బరు:

ఇది అసంతృప్త హైడ్రోకార్బన్ యొక్క పాలిమర్, 2–మిథైల్–1,3–బ్యూటాడినేని ఐసో(పేన్ అని కూడా పిలుస్తారు. ఇది భారతదేశం (దక్షిణ భాగం), ఇండోనేషియా, మలేషియా, సిలోన్, దక్షిణ అమెరికా మొదలైన ఉష్ణమండల మరియు పాక్షిక ఉష్ణమండల దేశాలలో లభించే రబ్బరు చెట్ల రబ్బరు పాలు నుండి పొందబడుతుంది. రబ్బరు పాలు నీటిలో చెదరగొట్టబడిన రూబర్ హైడ్రోకార్బన్లలో 25–40% ఉంటుంది. స్టెబిలైజర్ ప్రోటీన్లు మరియు కొన్ని కొవ్వు అమ్లాలతో పాటు. ఇది సహజమైన పాలిమర్ మరియు విశేషమైన స్థితిస్థాపకతను కలిగి ఉంటుంది. ఇది సాపేక్షంగా చిన్న అనువర్తిత శక్తి కింద దీర్ఘ (శేణి రివర్సిబుల్ పొడిగింపుకు లోనవుతుంది. ఈ స్థితిస్థాపకత వివిధ ఉపయోగాలకు విలువైనదిగా చేస్తుంది.



In natural rubber 10,000 to 20,000 isoprene units are linked together.

#### రబ్బరు వల్మనీకరణ:

రబ్బరు యొక్క విస్తృత అప్లికేషన్లు స్థితిస్థాపకత అని పిలువబడే దాని లక్షణం కారణంగా ఉన్నాయి మరియు అందుకే రబ్బరు ఎలాస్టోప్లాస్టిక్ లేదా ఎలాస్టోమర్ అని చెప్పబడింది. యాదృచ్ఛికంగా, 1893లో, చార్లెస్ గుడ్ ఇయర్స్ వేడి రబ్బరుకు సల్ఫర్ను జోడించడం వల్ల దాని భౌతిక లక్షణాలను అద్భుతమైన రీతిలో మెరుగుపరిచే మార్పులు సంభవిస్తాయని కనుగొన్నారు. ఈ ప్రక్రియను వల్మనైజేషన్ అంటారు. ఇది సల్ఫర్ సమక్షంలో ముడి రబ్బరును వేడి చేయడం ద్వారా లేదా CS₂లో S₂Cl₂ ద్రావణంలో ముంచడం ద్వారా నిర్వహించబడుతుంది. వల్మనీకరణ ఆధారపడి ఉంటుంది:

i) ఉపయోగించిన సల్పర్ మొత్తం:

సల్ఫర్ రబ్బరు మొత్తాన్ని పెంచడం ద్వారా గట్టిపడవచ్చు.

- ii) ఉష్ణోగత
- iii) తాపన వ్యవధి.

ముడి రబ్బరు 3% (గౌండ్ సల్ఫర్, ఒక యాక్సిలరేటర్ మరియు యాక్టివేటర్తో సన్నిహితంగా మిళితం చేయబడుతుంది మరియు తర్వాత సుమారు 150₀C వరకు వేడి చేయబడుతుంది (టెర్లకు ఇది 1150₀C). వల్కనీకరణ అనేది ప్రగతిశీల ప్రతిచర్య మరియు ఒక నిర్దిష్ట దశకు అనుమతించబడుతుంది. వల్కనీకరణ ప్రక్రియ యొక్క వివరణాత్మక మోడ్ దృశ్యమానం చేయడం కష్టంగా ఉండవచ్చు, అయితే వల్మనైజ్డ్ రబ్బరు యొక్క ప్రోబేల్ నిర్మాణం క్రింద చిత్రీకరించబడింది (Fig. 33. 4)







Natural rubber

Vulcanized rubber

#### Fig. 33.4 : Process of vulcanization of rubber

Natural Rubber Vulcanised rubber **1** Natural rubber is soft and sticky 1 Vulcanized rubber is hard and non-sticky. It has low tensile strength. 2 It has high tensile strength. 2 **3** It has low elasticity. 3 It has high elasticity. 4. It can be used over a narrow range of 4. It can of be used over a wide range of temperature (-400 to 1000° C) temperature (from 100to 600°C) 5 It has low wear and tear resistance 5 It has high wear and tear resistance. 6. It is soluble in solvents like ether, 6. It is insoluble in most of the common carbon tetrachloride, petrol, etc. solvents.

#### Table 33.3 : Comparison of some properties of natural rubber and vulcanized rubber :

#### 2) సింథటిక్ రబ్బర్లు:

సహజ రబ్బరుతో సమానమైన భౌతిక లక్షణాలను కలిగి ఉన్న సింథటిక్ హై పాలిమర్లను సింథటిక్ రబ్బరు అంటారు. సింథటిక్ రబ్బరు అనేది సహజ రబ్బరుపై మెరుగుదల, ముఖ్యంగా నూనెలు, గ్యాస్, ద్రావకాలు మొదలైన వాటికి నిరోధకతకు సంబంధించి. సహజ రబ్బరుకు సింథటిక్ ప్రత్యామ్నాయాన్ని కనుగొనే ప్రయత్నాలు చాలా ముందుగానే බ්රිරු ක්රි. බ්රි. ක්රි. ක් గ్రెవిల్లే విరియం (1860), రబ్బరు నుండి ఐసోడ్రేన్ అనే ద్రవాన్ని పొందారు. అతను రబ్బరును ఐసోడ్రేన్ యొక్క పాలిమర్గా పరిగణించాడు. ట్రిట్జ్ హాఫ్మాన్ (1909), 2, 3–డైమిథైల్ బ్యూటాడిన్ యొక్క పాలిమరైజేషన్ ద్వారా రబ్బరును మొదటగా సంశ్లేషణ చేశాడు. సింథటిక్ రబ్బరు టోఐసో(పేన్ను పోలి ఉండే పెద్ద సంఖ్యలో కంజుగేటెడ్ డైన్ల పాలిమరైజేషన్ ద్వారా ఉత్పత్తి చేయబడింది. బ్యూటాడినైపై సోడియం చర్య ద్వారా జర్మన్లచే తయారు చేయబడింది. na" సోడియం Na చిహ్నం నుండి). అదేవిధంగా అమెరికన్లు S.B.R. (సైరీన్ బ్యూటాడిన్ రబ్బర్) సాధారణంగా G.R.S. అప్పటి నుంచి సహజ రబ్బరు ఉత్పత్తితో పాటు సింథటిక్ రబ్బరు పరిశ్రమ మనుగడ సాగిస్తోంది. కొన్ని సింథటిక్ రబ్బర్లు ఒకే మోనోమర్ యొక్క పాలిమరైజేషన్ ద్వారా తయారు చేయబడతాయి, ఉదాహరణకు నియో[పేన్ క్లోరో[పేన్ యొక్క పాలిమరైజేషన్ ద్వారా తయారు చేయబడుతుంది, అయితే సింథటిక్ రబృర్లు Buna-S, BunaN మరియు Butylrubber మొదలైనవి ఒకటి కంటే ఎక్కువ మోనోమర్లను కలిగి ఉన్నందున కోపాలిమర్లు. నియో(పైన్:

ఈ సింథటిక్ రబ్బరు దాని లక్షణాలలో సహజ రబ్బరును పోలి ఉంటుంది. ఇది క్లోరో(పేస్ యొక్క పాలిమరైజేషన్

ద్వారా పొందబడుతుంది.

n 
$$CH_2 = C - CH = CH_2 \longrightarrow (CH_2 - C = CH - CH_2)_n$$
  
 $CH_3 \qquad Cl$   
Chloroprene neoprene

వినైలాసిటిలీస్తో హెచ్సీఎల్ ప్రతిచర్య ద్వారా క్లోరో(పేస్ పొందబడుతుంది.

$$CH_2 = CH - C \equiv CH + HC1 \longrightarrow CH_2 = CH - C = CH$$
Vinyl acetylene
Cl
Chloroprene



Neoprene swim suits

నియో[పేస్ ఉపయోగాలు:

- i) బెల్టులు, గొట్టాలు, షూ హీల్స్, స్టాపర్లు మొదలైనవి తయారు చేయడం మరియు
- ii) పెట్రోల్, నూనె మరియు ఇతర ద్రావకాలను నిల్వ చేయడానికి కంటైనర్ల తయారీ.

#### బునా-S:

ఇది సోడియం మెటల్ సమక్షంలో బ్యూటాడిన్ మరియు స్టైరీన్ యొక్క పాలిమరైజేషన్ ద్వారా పొందబడుతుంది.

n 
$$CH_2 = CH - CH = CH_2 + n CH = CH_2 \xrightarrow{Na}_{Heat}$$
  
butadiene

$$-(-CH_2 - CH = CH - CH_2 - CH - CH_2)_{-n}$$
  
Buna-S  $C_6H_5$ 



Buna-Sలో, Bu స్టాండ్ బ్యూటాడిస్, Na అంటే సోడియం మరియు S అంటే స్టెరీస్. దీనిని S.B.R అని కూడా అంటారు. (స్టైరిస్ బుటాడిస్ రబ్బర్). ఇది సహజ రబ్బరు కంటే కొంచెం తక్కువ తన్యత బలం కలిగి ఉంటుంది. Buna-S దీని కోసం ఉపయోగించబడుతుంది:

i) ఆటోమొబైల్ టెర్లను తయారు చేయడం

ii) రబ్బరు అరికాళ్ళు, బెల్టులు మరియు గొట్టాలు మొదలైనవి. Buna-N: ఇది సోడియం మెటల్ సమక్షంలో బ్యూటాడిన్ యొక్క రెండు భాగాలు మరియు యాక్రిలో నైట్రిల్ యొక్క ఒక భాగాన్ని కోపాలిమరైజేషన్ చేయడం ద్వారా పొందబడుతుంది. బునా – N నూనెలు (పెట్రోల్), ద్రావకాలు మరియు వేడి మొదలైన వాటి ద్వారా వాపు చర్యకు గట్టి మరియు అత్యంత నిరోధకతను కలిగి ఉంటుంది.

#### ఉపయోగాలు:

i) ఇది ద్రావకాల కోసం నిల్వ ట్యాంకుల తయారీకి మరియు iii చమురు ముద్రల తయారీకి ఉపయోగించబదుతుంది.

### బ్యూటెల్ రబ్బరు:

ఇది బ్యూటాడిస్ మరియు ఐసోబ్యూటిలీస్ యొక్క సహ–పాలిమరైజేషన్ ఫలితంగా పొందబడుతుంది. ఇది సాధారణంగా తక్కువ పరిమాణంలో ఐసో(పేన్ సమక్షంలో నిర్వహించబడుతుంది. ఐసో(పేన్ యొక్క పనితీరు ఖచ్చితంగా తెలియదు.

# nCH2 = CH-CH = CH2 + (CH3)2C = CH2 $\longrightarrow$ -(- CH-CH = CH - CH₂ - C - CH₂) butadiene iso-butylene Butyl rubber (CH3)2

బ్యూటైల్ రబ్బర్లు ఆమ్లాలు మరియు క్షారాల పట్ల జడత్వం కలిగి ఉంటాయి, కానీ పెట్రోలియం ఉత్పత్తుల పట్ల పేలవమైన (పతిఘటనను కలిగి ఉంటాయి.

#### ఉపయోగాలు:

- i) ఇది టైర్ల లోపలి గొట్టాల తయారీకి ఉపయోగించబడుతుంది మరియు
- ii) కన్వేయర్ బల్ట్ల్, ట్యాంక్ లైనింగ్లు మరియు అధిక పోల్టేజ్ వైర్లు మరియు కేబుల్స్ యొక్క ఇన్సులేషన్ మొదలైన వాటి తయారీకి.

### QUESTIONS 33.3

- 1. కింది పాలిమర్ల మోనోమర్ల IUPAC పేర్లు మరియు నిర్మాణాలను వ్రాయండి:
- (i) సహజ రబ్బరు ii) నియో[పేన్
- .....
- 2. రబ్బరు వల్కనీకరణలో సల్ఫర్ పని ఏమిటి?
- .....
- 3. Buna-S అంటే ఏమిటి? ఇది ఎలా సంశ్లేషణ చేయబడింది?

.....

4. సహజ రబ్బరు మరియు వల్మనైజ్డ్ రబ్బరు యొక్క లక్షణాలను (కనీసం మూడు) సరిపోల్చండి?

రబ్బర్ గురించిన వివరణాత్మక చర్చ తర్వాత, మనం ఇప్పుడు మరికొన్ని వాణిజ్యపరంగా ముఖ్యమైన పాలిమర్ల గురించి చర్చిస్తాం.

#### 33.6 పాలియోలిఫిన్లు

పాలీ ఒలేఫిన్లు అనేది ఓలేఫిన్ (ఆల్కీన్) లేదా దాని అనువైన ఉత్పన్నం యొక్క పాలిమరైజేషన్ ద్వారా తయారు

చేయబడిన సింథటిక్ పాలిమర్ల యొక్క ప్రధాన తరగతి. వీటిలో ఎక్కువ భాగం పెట్రో కెమికల్ పరిశ్రమ నుండి లభిస్తాయి. పాలిథిలిన్, పాలీప్రొపైలిన్, PVC, టెప్లాన్ మొదలైనవి పాలియోలిఫిన్ల తరగతికి చెందినవి. 1) పాలిథిలిన్ లేదా పాలిథిన్:

ఇది ఇథిలీన్ (CH₂ = CH₂) యొక్క పాలిమరైజేషన్ ద్వారా ఏర్పడుతుంది. ఇది పెద్ద పరిమాణంలో తయారు చేయబడుతుంది మరియు మీరు దాదాపు ప్రతిచోటా కనుగొనే అత్యంత సాధారణ పాలిమర్. పాలిథీస్ అనేది పాలిమర్ చైన్లో శాఖలుగా మరియు పాలిమర్ అణువులలో కాంపాక్ట్ కాకుండా ఉండే స్వభావంపై ఆధారపడి తక్కువ సాంద్రత కలిగిన పాలిథిన్ (LDPE) మరియు హై డెన్సిటీ పాలిథిన్ (HDPE) రెండు రకాలు. తక్కువ సాంద్రత కలిగిన పాలిథిన్ పాలిమర్ చైన్లలో శాఖలుగా ఉంటుంది మరియు ప్యాకింగ్ కాంపాక్ట్ కాదు. అధిక సాంద్రత కలిగిన పాలిథిన్ అణువుల సరళ గొలుసును కరిగి ఉంటుంది, ఇవి మరింత కాంపాక్ట్ పద్ధతిలో ప్యాక్ చేయబడతాయి (Fig. 33. 1 మరియు Fig. 33. 2).

> $n CH_2 = CH_2 \longrightarrow -(CH_6 - CH_2)$ ethylene polvethylene

పైపులు, ఇన్సులేటర్లు, ప్యాకింగ్ ఫిల్మ్ల్లు, క్యారీ–బ్యాగ్లు మొదలైన వాటి తయారీకి పాలిథిలిన్ ఉపయోగించబడుతుంది. 2) పాలీప్రొఫైలిన్:

మోనోమర్ యూనిట్లు ప్రొపైలిన్ అణువులు. ఇది సాధారణంగా జిగ్లెర్–నట్టా ఉత్పేరకం (టైథైల్ అల్యూమినియం మరియు టైటానియం క్లోరైడ్ మిశమం) కలిగిన n–హెక్సేస్ (జడ ద్రావకం) ద్వారా (పొపైలిన్ను పంపడం ద్వారా తయారు చేయబడుతుంది.

$$n \begin{array}{c} CH_{3} & CH_{3} \\ \downarrow \\ n CH = CH_{2} \end{array} \xrightarrow[TiCl_{2}]{} H_{1}(C_{2}H_{3})_{3} \\ Propylene \end{array} \xrightarrow[TiCl_{2}]{} CH_{3} \\ -(-CH_{2} - CH_{2} -) -_{n} \\ Polypropylene \end{array}$$

పాలీప్రొఫైలిన్ పాలిథిన్ కంటే గట్టిది, బలమైనది మరియు తేలికైనది. పాలీప్రొఫైలిన్ను వస్త్ర పదార్థం మరియు ఆహారాన్ని ప్యాకింగ్ చేయడానికి, బ్యాగ్ లైనింగ్, గ్రామోఫోన్ రికార్డులు తాడులు, కార్పెట్ పైబర్లు మొదలైన వాటికి ఉ పయోగిస్తారు.

# 3) బెఫ్లాన్ లేదా పాలీ బెట్రాఫ్లోరో ఎథిలిన్ (PTFE):

మోనోమర్ యూనిట్ టెరాఫ్లోరో ఎథిలిన్ అణువు. అమ్మోనియం పెరాక్సో సల్ఫేట్ సమక్షంలో టెట్రాఫ్లోరోఎథిలిన్ ను ఒత్తిడిలో వేడి చేయడం ద్వారా టెఫ్లాన్ తయారు చేయబడుతుంది. [(NH4)2S2O8].

n CF₂ = CF₂ 
$$\xrightarrow{(NH_4)_2S_2O_4}$$
  $-(-CF_2 - CF_2 -)-_n$   
Tetrafluoroethylene Teflon

10/

టెఫ్లాన్ చాలా కఠినమైన పదార్థం మరియు వేడి, అమ్లాలు లేదా స్థావరాల చర్యకు నిరోధకతను కలిగి ఉంటుంది. ఇది విద్యుత్ యొక్క చెడు కండక్టర్. టెఫ్లాన్ పూత పాత్రలను అంటుకోకుండా చేయడానికి, సీల్స్ మరియు రబ్బరు పట్టీలను తయారు చేయడానికి ఉపయోగించబడుతుంది, ఇవి అధిక పీడనంతో నిలబడగలవు, అధిక β్రీక్వెన్సీ విద్యుత్ సంస్థాపనలకు ఇన్సులేషన్.

4) పాలీవినైల్ క్లోరైడ్ (PVC):

మోనోమర్ యూనిట్లు వినైల్ క్లోరైడ్ అణువులు. డైబెంజాయిల్ పెరాక్సైడ్ సమక్షంలో వినైల్ క్లోరైడ్ను జడ ద్రావకంలో వేడి చేయడం ద్వారా PVC తయారు చేయబడుతుంది.



PVC ఒక గట్టి కొమ్ము పదార్థం. ఏది ఏమైనప్పటికీ, ప్లాస్టిసైజర్ని జోడించడం ద్వారా ఏ స్థాయిలోనైనా వశ్యతను పొందేలా చేయవచ్చు. ఇది రసాయనాలతో పాటు వేడిని తట్టుకుంటుంది. ఇది రెయిన్ కోట్లు, హ్యాండ్బ్యాగ్లు, బొమ్మలు, ఇంటి పైపులు, గ్రామోఫోన్ రికార్డులు, ఎలక్ట్రికల్ ఇన్సులేషన్ మరియు ఫ్లోర్ కవరింగ్ తయారీకి ఉ పయోగించబడుతుంది.

దీని మోనోమర్ యూనిట్ మిథ్లెల్ మెథాక్రిలేట్



# Polymethyl metha acrylate (PMMA)

PMMA అనేది కఠినమైన మరియు పారదర్శకమైన పాలిమర్ మరియు వేడి, కాంతి మరియు వృద్ధాప్యం యొక్క ప్రభావానికి చాలా నిరోధకతను కలిగి ఉంటుంది. ఇది అధిక ఆప్టికల్ క్లారిటీని కలిగి ఉంటుంది. ఇది లెన్స్లు, పారదర్శక గోపురాలు మరియు స్పైలైట్లు, కట్టుడు పళ్ళు, ఎయిర్కెకాప్ట్ కిటికీలు మరియు రక్షణ పూతల తయారీలో ఉపయోగించబడుతుంది. దీని వాణిజ్య పేర్లు లూసైట్, ప్లెక్సిగ్లాస్, అక్రిలైట్ మరియు పెర్ఫ్పెక్స్.

# 33.7 పాలిస్టర్

కాన్ని సింథటిక్ పాలిమర్లలో ఈస్టర్ గ్రూప్ (R-COO-R) ఉంటుంది. ఇవి కండెన్సేషన్ పాలిమర్లు. ఈ తరగతిలో ముఖ్యమైన సభ్యులు పాలిస్టర్ మరియు గ్లిప్టల్ రెసిన్లు.

### బెరెలీన్:

ఇది ఇథినెగ్లైకాల్ మరియు టెరెప్తాలిక్ యాసిడ్ మధ్య సంక్షేపణ చర్య ద్వారా పొందిన పాలిమర్



టెరెలీన్ చాలా సాధారణ రసాయనాలు మరియు జీవపదార్ధాల చర్యకు మరియు రాపిడికి కూడా నిరోధకతను కలిగి ఉ ంటుంది. ఇది తక్కువ తేమను గ్రహించే శక్తిని కలిగి ఉంటుంది. కాబట్టి ఇది వాష్ మరియు వేర్ ఫాట్రిక్స్ తయారీలో విస్త్రతంగా ఉపయోగించబడుతుంది. పాలిమర్ నుండి తయారైన పాలిస్టర్ టెక్ట్రైల్ ఫైబర్లు టెరెలినియర్ డాక్రాన్ అనే వాణిజ్య పేరుతో విక్రయించబడతాయి. ఇది దుస్తులలో పత్తి మరియు ఉన్నితో కూడా కలుపుతారు. ఇది సీట్ బెల్ట్ మరియు సెయిల్లో కూడా ఉపయోగించబడుతుంది. పాలిమర్ను ఫిల్మ్ తయారీలో కూడా ఉపయోగిస్తారు. ఇది సీట్ బెల్ట్ తయారీలో, మాగ్నెటిక్ రికార్డింగ్ టేపుల తయారీలో మరియు ఆహారాన్ని ప్యాకింగ్ చేయడానికి కూడా ఉ పయోగించబడుతుంది. గుండె బైపాస్ ఆపరేషన్లో మానవ రక్తనాళాలకు డాక్రాన్ (మరియు టెఫ్లాన్) గొట్టాలు మంచి ప్రత్యామ్నాయాలు.

### గ్లిష్టల్ లేదా ఆల్రైల్ రెసిస్:

గ్లిఫ్టల్ అనేది డి–బేసిక్ ఆమ్లాలు మరియు పాలీహైద్రాక్సీ ఆల్కహాల్ల సంక్షేపణం ద్వారా పొందిన అన్ని పాలిమర్ల సాధారణ పేరు. ఇథిలీన్ గైకాల్ మరియు ఆర్థో–ప్తాలిక్ యాసిడ్ మధ్య సంక్షేపణ (పతిచర్య ద్వారా పొందబడిన సరళమైన గ్లిప్తాలిస్ (పాలీ ఎథెలెనెగ్లైకాల్ థాలేట్).



గ్లిప్టల్ రెసిన్లు మూడు డైమెన్షనల్ క్రాస్–లింక్డ్ పాలిమర్లు. పాలీ (ఇథిలీన్ గైకాల్పాలేట్) తగిన ద్రావకాలలో కరిగిపోతుంది మరియు బాష్పీభవనంపై ద్రావణం కఠినమైన మరియు అనువైన చలనచిడ్రాన్ని వదిలివేస్తుంది. అందువలన, ఇది కట్టుబడి ఉండే పెయింట్స్ మరియు లక్కర్లలో ఉపయోగించబడుతుంది.

# 33.8 పాలిమైద్

పాలీ అమైడ్లు అమైడ్ సమూహం (R-CO-NH-) కలిగి ఉండే పాలిమర్లు. ముఖ్యమైన పాలీ అమైడ్ నైలాన్–66, ఇది సింథటిక్ పాలిమర్. ప్రకృతిలో కూడా పాలిమర్లు వాటి అణువులలో అమైడ్ అనుసంధానాలను కలిగి ఉంటాయి.

# నైలాన్–66:

ఇది అడిపిక్ యాసిడ్ (బెట్రా మిథలీన్ డైకార్బాక్సిలిక్ యాసిడ్) మరియు హెక్సామెథీలిన్ డైమైన్ యొక్క పాలిమర్.

$$n H_{2}N - (CH_{2})_{6} NH_{2} + n HOOC (CH_{2})_{4} - COOH \xrightarrow{\triangle}_{\approx 525K} \begin{bmatrix} H & H & 0 \\ I & I & I \\ \sim N & (-CH_{2})_{6} N - C - (-CH_{2})_{4} C \\ (Nylon - 66) \end{bmatrix} + 2nH_{2}O$$

నైలాన్-66 (నైలాన్-సిక్స్-సిక్స్గా చదవండి) స్పిన్ చేసే పరికరాల ద్వారా షీట్ లేదా ఫైబర్లలో వేయవచ్చు. నైలాన్ ఫైబర్స్ అధిక తన్యత శక్తిని కలిగి ఉంటాయి. అవి కఠినమైనవి మరియు రాపిడికి నిరోధకతను కలిగి ఉంటాయి. అవి కూడా కాస్త సాగే స్వభావం కలిగి ఉంటాయి. నైలాన్ వస్త్ర పరిశ్రమలో ముళ్ళగరికెలు మరియు బ్రష్**లు, తివాచీలు** మరియు బట్టల తయారీలో వినియోగాన్ని కనుగొంటుంది, ముడతలుగల నైలాన్ రూపంలో సాగే అల్లిన వస్తువులు. పాలిమర్ల పరమాణు బరుపు

పాలిమర్ యొక్క పరమాణు ద్రవ్యరాశి స్థిరంగా ఉండదు. పాలిమర్ యొక్క పరమాణు బరువు సగటు విలువ పరంగా వ్యక్తీకరించబడుతుంది. పాలిమర్ యొక్క పరమాణు బరువు సంఖ్య పరంగా వ్యక్తీకరించబడింది–సగటు పరమాణు బరువు (Mn) మరియు బరువు–సగటు పరమాణు బరువు (Mw).

## సంఖ్య-సగటు పరమాణు బరువు(Mn):

కణాల మొత్తం ద్రవ్యరాశికి దానిలో ఉన్న కణాల సంఖ్యకు మధ్య నిష్పత్తిని సంఖ్య–సగటు పరమాణు బరువు అంటారు. సంఖ్య–సగటు పరమాణు బరువు దానిలో ఉన్న అణువుల సంఖ్యపై ఆధారపడి ఉంటుంది. M1 ద్రవ్యరాశి ఉన్న పాలిమర్లోని కణాల సంఖ్య ప్రతి ఒక్కటి N1 మరియు M2 ద్రవ్యరాశి ప్రతి N2 మరియు Mi ద్రవ్యరాశితో ప్రతి ఒక్కటి Ni గా ఉండనివ్వండి.

అప్పుడు పాలిమర్ నమూనా మొత్తం ద్రవ్యరాశి =  $[N_1M_1 + N_2 M_2 + ..... + NiMi] = <math>\sum_{n=1}^{\infty} NiMi$ 

మొత్తం సంఖ్య. పారిమర్లోని కణాలలో  $[N1 + N2 + .... Ni] = = \sum_{n=1}^{\infty} Ni$ 

పాలిమర్ యొక్క సగటు పరమాణు బరువు (Mn) = (Mn) =total particles/No.of particles

కణాల మొత్తం కణాల సంఖ్య 
$$= \frac{[N_1M_1 + N_2M_2 + \dots + N_1M_1]}{N_1 + N_2 + \dots + N_1} = \frac{\sum_{n_i=1}^{\infty} N_iM_i}{\sum_{n_i=1}^{\infty} N_i}$$

సంఖ్య–సగటు పరమాణు బరువును రసాయనికంగా ఎండ్–గ్రూప్ విశ్లేషణ పద్ధతి ద్వారా లేదా భౌతికంగా ఏదైనా కొలిగేటివ్ ప్రాపర్టీని ఉపయోగించడం ద్వారా నిర్ణయించవచ్చు.

#### బరువు సగటు పరమాణు బరువు (Mw):

డ్రతి కణం యొక్క పరమాణు బరువు నమూనా యొక్క మొత్తం బరువుకు జాతుల సహకారంతో గుణించబడుతుంది. నమూనాలో ఉన్న డ్రతి జాతి ఉత్పత్తుల మొత్తాన్ని పాలిమర్ యొక్క బరువు –సగటు పరమాణు బరువు అంటారు. M1 ద్రవ్యరాశి ఉన్న కణాల సంఖ్య ద్రతి ఒక్కటి N1, ద్రవ్యరాశి M2 ద్రతి ఒక్కటి N2 మరియు Mi ద్రవ్యరాశితో ద్రతి ఒక్కటి Ni గా ఉందనివ్వండి. అప్పుడు పాలిమర్లలోని అన్ని కణాల మొత్తం బరువు = M1 ద్రవ్యరాశితో N1 కణాల బరువు = N1M1

మొత్తం ద్రవ్యరాశి యొక్క భిన్నం 
$$=$$
  $= \sum_{n_1=l}^{\infty} N_i M_i$ 

ఈ భిన్నంతో జాతుల పరమాణు భారాన్ని (M1) గుణించడం మనకు లభిస్తుంది =  $\binom{M_1}{\sum_{n_1=1}^{\infty} N_i M_i}$ 

అదేవిధంగా ఇతర జాతులకు పరమాణు బరువు యొక్క ఉత్పత్తుల మొత్తం మరియు మొత్తం బరువు యొక్క భిన్నం =

$$= \frac{\displaystyle{\sum_{n_{i}=l}^{^{00}}(N_{i}M_{i}^{^{2}})}}{\displaystyle{\sum_{n_{i}=l}^{^{00}}(N_{i}M_{i})}}$$

పాలిమర్ యొక్క బరువు సగటు పరమాణు బరువు = 
$$(\overline{MW}) = \frac{\sum_{n_i=1}^{\infty} (N_i M_i^2)}{\sum_{n_i=1}^{\infty} (N_i M_i)}$$

పరమాణు బరువులకు యూనిట్లు లేవు మరియు Ni అనేది కేవలం ఒక సంఖ్య. బరువు–సగటు పరమాణు బరువు (Mw) మరియు సంఖ్య–సగటు పరమాణు బరువు (Mn) నిష్పత్తిని పాలీ డిస్పర్సిటీ ఇండెక్స్ (PDI) అంటారు.

#### PROBLEM:

20% అణువులు 20,000 పరమాణు ద్రవ్యరాశిని కలిగి ఉండే పాలిమర్ నమూనా యొక్క సగటు పరమాణు ద్రవ్యరాశిని లెక్కించండి; 50% మందికి 30,000 మరియు మిగిలిన వారికి 50,000 ఉన్నాయి. Ans:

 $\overline{(M_n)} = \frac{[N_1M_1 + N_2M_2 + N_3M_3]}{N_1 + N_2 + N_3}$  $= \frac{20x20,000 + 50x30,000 + 30x50,000}{20 + 50 + 30} = \frac{34x10^5}{100} = 34x10^3$  $= \frac{20x(20,000)^2 + 50x(30,000)^2 + 30x(50,000)^2}{20x20,000 + 50x30,000 + 30x50,000}$  $= \frac{8x10^9 + 45x10^9 + 75x10^9}{4x10^5 + 10x10^5 + 15x10^5} = \frac{128x10^9}{34x10^5} = 37,647.0$ 

#### ఇంటెక్స్ ప్రశ్నలు 33.4

1. PMMA దేనిని సూచిస్తుంది?

.....

2. టెరిలీన్ మోనోమర్ల పేర్లను ద్రాయండి?

.....

3. నైలాన్-66 ఎలా సంశ్లేషణ చేయబడింది?

.....

4. కింది పారిమర్ల సంశ్లేషణ కోసం ప్రశ్నలను వ్రాయండి:

i) గ్లిప్టల్ ii) బెఫ్లాన్

5. పాలిమర్ యొక్క పాలీ డిస్పర్ఫిటీ ఇండెక్స్ (PDI) విలువ ఎప్పుడు ఒకదానికి సమానంగా ఉంటుంది?

#### 33.9 బయోపాలిమర్లు:

మొక్కలు మరియు జంతువులలో ఉండే అనేక పాలిమర్లు, పాలీ శాక్రైడ్లు (స్టార్చ్, సెల్యులోజ్), ప్రొటీన్లు మరియు న్యూక్లియిక్ యాసిడ్లు మొదలైనవి. ఇవి మొక్కలలో వివిధ జీవన ప్రక్రియలను నియంత్రిస్తాయి మరియు జంతువులను బయోపాలిమర్లు అంటారు.

### i) స్టార్చ్:

ఇది గ్లూకోజ్ యొక్క పాలిమర్. ఇది మొక్కల ప్రధాన ఆహార నిల్వ.

# ii) సెల్యులోజ్:

ఇది గ్లూకోజ్ యొక్క పాలిమర్ కూడా. ఇది మొక్కల యొక్క ప్రధాన నిర్మాణ పదార్థం. స్టార్చ్ మరియు సెల్యులోజ్ రెండూ కిరణజన్య సంయోగక్రియ సమయంలో ఉత్పత్తి అయ్యే గ్లూకోజ్ నుండి మొక్కల ద్వారా తయారవుతాయి. %అఅఅ%) ప్రోటీన్లు:

ఇవి అమైనో ఆమ్లాల పాలిమర్లు. అవి సాధారణంగా 20 నుండి 1000 అమైనో ఆమ్లాలు అత్యంత వ్యవస్థీకృత అమరికలో కలిసి ఉంటాయి. ఇవి జంతువుల బిల్డింగ్ బ్లాక్స్ మరియు మన ఆహారంలో ముఖ్యమైన భాగం.

# iii) న్యూక్లియికాసిడ్లు:

ఇవి వివిధ న్యూక్లియోటైద్ల పాలిమర్లు. ఉదాహరణకు, RNA మరియు DNA సాధారణ న్యూక్లియోటైద్లు. ఈ బయో పాలిమర్లు మన జీవితానికి చాలా అవసరం.

# 33.10 పర్యావరణ సమస్యలు మరియు బయోడిగ్రేడబుల్ పాలిమర్లు:

ఈ విభాగంలో పర్యావరణ కాలుష్యానికి కారణం కాని పాలిమర్ల గురించి చర్చిస్తాం. పెరుగుతున్న పాలిమర్ల వినియోగంతో వీటి వ్యర్థాలను పారవేయడం సమస్యగా మారింది. ఉత్పత్తులు భయంకరమైన శాపాన్ని కలిగిస్తున్నాయి. చాలా సింథటిక్ పాలిమర్ల ప్లాస్టిక్ల రూపంలో ఉన్నందున, ఇది తరచుగా ప్యాకింగ్ మెటీరియల్ రూపంలో సమృద్ధిగా ఉపయోగించబడుతుంది మరియు సంచులను విసిరివేస్తుంది. సాధారణ పాలిమర్లలు కాంతి, ఆక్సిజన్, నీరు లేదా సూక్ష్మజీవుల ద్వారా సహజంగా క్షీణించవు కాబట్టి, వాటి పారవేయడంలో తీవ్రమైన సమస్య ఉంది. నాన్–బయోడిగ్రేడబుల్ పాలిమర్లను అజాగ్రత్తగా ఉపయోగించడం వల్ల ఏర్పడే పర్యావరణ సమస్యలను ఈ పదార్థాలను సరైన రీతిలో పారవేయడం ద్వారా తగ్గించవచ్చు మరియు వాటిని తిరిగి ఉపయోగించడం మరియు వాటిని ఇతర అవసరాలకు రీమోల్డింగ్ చేయడం ద్వారా తగ్గించవచ్చు. మరొక మార్గం వాటిని సేకరించి వాటిని తిరిగి మోనోమర్లకు డిపోలిమరైజ్ చేయడం. దీనికి పరిమిత అప్లికేషన్ ఉన్నప్పటికీ. ఎంజైమ్−ఉత్బ్రేరక (పతిచర్యల ద్వారా చిన్న భాగాలుగా విభజించబడే బయోడిగ్రోడబుల్ పాలిమర్లను ఉత్పత్తి చేయడం మరొక ఎంపిక. అవసరమైన ఎంజైమ్లను సూక్ష్మజీవులు ఉత్పత్తి చేస్తాయి. చైన్ గ్రోత్ పాలిమర్ల యొక్క కార్బన్– కార్బన్ బంధాలు ఎంజైమ్ ఉత్పేరక ప్రతిచర్యలకు జడమైనవి, అందువల్ల అవి జీవఅధోకరణం చెందనివి. అటువంటి పాలిమర్లను బయోడిగ్రేడబుల్గా చేయడానికి మనం గొలుసులలో కొన్ని బంధాలను చొప్పించాలి, తద్వారా వీటిని ఎంజైమ్ల్ ద్వారా సులభంగా విచ్ఛిన్నం చేయవచ్చు. అటువంటి పాలిమర్లను వ్యర్థాలుగా పాతిపెట్టినప్పుడు, మట్టిలో ఉండే సూక్ష్మజీవులు పాలిమర్ను క్షీణింపజేస్తాయి, తద్వారా అవి పర్యావరణంపై ఎటువంటి తీవ్రమైన ప్రభావాలను కలిగించవు. పాలిమర్ను బయోడిగ్రేడబుల్గా మార్చే ఉత్తమ పద్దతుల్లో ఒకటి, పాలిమర్లో హైద్రోలైసేబుల్ ఈస్టర్ గ్రూప్ ను ఇన్ సర్ట్ చేయడం.

# 33.11 కొన్ని బయోడిగ్రేడబుల్ పాలిమర్లలు

పెద్ద సంఖ్యలో బయో డిగ్రేడబుల్ పాలిమర్లు ఇప్పుడు అందుబాటులో ఉన్నాయి మరియు మరిన్ని జాబితాకు జోడించబడుతున్నాయి. అయినప్పటికీ, ఇవి ఖరీదైనవి, కాబట్టి, ఖర్చు కారకాన్ని విస్మరించగల ప్రత్యేక పరిస్థితుల్లో ఇవి ఉపయోగించబడతాయి. భవిష్యత్తులో, వాటి ధర తగ్గతుంది కాబట్టి ఇవి రోజువారీ జీవితంలో ఎక్కువ ఉపయోగాన్ని పొందుతాయి మరియు నాన్–బయో–డిగ్రేడబుల్ పాలిమర్లను భర్తీ చేస్తాయి.

కొన్ని ముఖ్యమైన బయోడిగ్రేడబుల్ పారిమర్లు PHBV, PGA, PLA మరియు PCL

(PHBV) Poly-Hydroxybutyrate-co-ß-Hydroxyvalerte:

PHBV అనేది 3–హైద్రాక్సీ బ్యూటానోయిక్ యాసిడ్ మరియు (3–హైద్రాక్సీపెంటనోయికాసిడ్) యొక్క కోపాలిమర్, దీనిలో మోనోమర్ యూనిట్ల ఈస్టర్ లింకేజీల ద్వారా అనుసంధానించబడి ఉంటాయి.

 $\begin{array}{ccc} OH & OH \\ I \\ CH_3 - CH - CH_2 - COOH + CH_3 - CH_2 - CH - CH_2 - COOH \longrightarrow \\ \end{array}$ 3-Hydroxybutanoic acid + 3-Hydroxypentanoic acid  $\left(\begin{array}{c} O - CH - CH_2 - O - CO \\ I \\ O \end{array}\right)_n \\ \end{array}$ PHBV

$$\mathbf{R} = -\mathbf{C}\mathbf{H}_{1} \ \mathbf{or} - \mathbf{C}\mathbf{H}_{2} - \mathbf{C}\mathbf{H}_{3}$$

PHBV యొక్క లక్షణాలు రెందు ఆమాల నిష్పత్తి ప్రకారం మారుతూ ఉంటాయి. 3–హైద్రాక్సీ బ్యూటానోయిక్ ఆమ్లం దృఢత్వాన్ని అందిస్తుంది మరియు 3–హైద్రాక్సీ పెంటనోయిక్ ఆమ్లం కోపాలిమర్కు వశ్యతను అందిస్తుంది.

i) PHBV ఆర్తో పెడిక్ పరికరాలలో ఉపయోగించబడుతుంది మరియు

ii) నియంత్రిత ఔషధ విడుదలలో ఎంజైమాటిక్ చర్య ద్వారా ఈ పాలిమర్ క్షీణించిన తర్వాత ఔషధ పుటిన్ PHBV క్యాప్సూల్ విడుదల అవుతుంది. ఇది బాక్టీరియా చర్య ద్వారా కూడా అధోకరణం చెందుతుంది.

PGA:

గైకోలిక్ ఆమ్లం యొక్క డైమర్ యొక్క చైన్ పాలిమరైజేషన్ ద్వారా పాలిగైకోలిక్ ఆమ్లం పొందబడుతుంది, HO-CH2COOH.

n HO – CH₂COOH 
$$\xrightarrow{\text{Heat}} \left( \begin{array}{c} O \\ \parallel \\ O - CH_2 - C - CO \end{array} \right)_n$$
  
Glycolic acid Polyglycolic acid (PGA)

PLA:

పాలియాక్టిక్ యాసిడ్ లాక్టిక్ యాసిడ్ (HO-CH(CH₃) COOH) యొక్క విందు యొక్క పాలిమరైజేషన్ ద్వారా లేదా లాక్టిక్ ఆమ్లం యొక్క మైక్రోబయోలాజికల్ సంశ్లేషణ ద్వారా పొందబడుతుంది, ఆ తర్వాత పాలీకండెన్సేషన్ మరియు ఆవిరి ద్వారా నీటిని తొలగించడం.



PCL:

పాలీ(E–కాప్రోలాక్టోన్) 6–హైద్రాక్సీ యొక్క లాక్టోన్ యొక్క చైన్ పాలిమరైజేషన్ ద్వారా పొందబడుతుంది హెక్సానోయిక్ ఆమ్లం.

 $\begin{pmatrix} O \\ -O - (CH_2)_5 - \stackrel{O}{C} - O \end{pmatrix}_n \xrightarrow{\text{Polymerisation}} PCL Poly (E-caprolactone)$ 

చాలా బయోడిగ్రేడబుల్ పాలిమర్లు గాయాలు మరియు కోతలను కుట్టడంలో ఉపయోగించబడతాయి.

- 1. శస్ర్రచికిత్పా కుట్లు వంటి వైద్య వస్తువులలో.
- 2. ఫిల్మ్ల్, సీడ్ కోటింగ్లు వంటి వ్యవసాయ సామగ్రిలే.
- 3. ఫుడ్ రేపర్లు, వ్యక్తిగత పరిశుభత ఉత్పత్తులు మొదలైన వాటిలో.

ఇంటెక్స్గ్ ప్రశ్నలు 33.4

1. PHBV అంటే ఏమిటి?

.....

- 2. బయోపాలిమర్లకు రెండు ఉదాహరణలు ఇవ్వండి?
- .....
- 3. బయోడిగ్రోడబుల్ పారిమర్లను నిర్వచించండి? మూడు ఉదాహరణలు చెప్పండి?

.....

4. శస్ర్రచికిత్ప అనంతర కుట్లు కోసం ఏ పాలిమర్ ఉపయోగించబడుతుంది?

కింది పట్టిక 33.4లో మనం ఇప్పుడు వాటి నిర్మాణాలు మరియు ఉపయోగాలతో పాటుగా వాణిజ్యపరంగా ముఖ్యమైన

# వివిధ పాలిమర్ల సంక్షిప్త ఖాతాని అందిస్తాము.

S.No	Name of Polymer	Structure	Uses
1	Polythene	$-(-CH_2 - CH_2)_n$	As Insulator, anticorrosive,
			packingmaterial, household and
			laboratory wares.
2	Polystyrene	$- \underbrace{CH - CH_2}_{l} _{n}$	As Insulator, wrapping material,
			manufacture of toys and household
			articles
3	Polyvinylchloride (PVC)	- <del>(</del> CH ₂ – CH <del>)</del>   CI	In manufacture of raincoats, hand bags, vinyl flooring and leather clothes
4	Polytetrafluoro ethylene	$-(-CF_2 - CF_2)_n$	As lubrican t, insulator and making
5	Polymethyl metha	CH₃   (CH₂-C)n   COOCH₃	PIFE) or lefton cooking wares. acrylate (PMMA) or Flexi glass As substitute of glass and making decorative materials.
6	Polyacrylonitrile (Orlon)	$-(-CH_2 - CH_2)$	In making synthetic fibres and synthetic wool.
7	Styrene butadiene rubber (SBR or (BuNa-S) CH ₂ - C	$CH = CH - CH_2 - CH - CH_2 + $   CN	In making automobile tyres and footwear.
8	- <del>(-</del> ( Nitrile rubber (BuNa-N)	$CH_2 - C = CH - CH_2 \dot{\tau}_n$ Cl	In making oil seals manufacture of hoses andtank linings.

Table 33.4 important polymers along with their structures and uses.

9	Neoprene	$-(-CH_2 - C = CH - CH_2 + n_n$ As insulator, making conveyor be	
			and printing rollers
10	Poly ethyl acrylate	$+CH_2-CH_7_n$   COOC ₂ H,	In making films, hose pipes and furnishing fabrics
11	Terylene (Dacron)	-+000-CH2-CH2-C	For making fibres, safety belts, tyre

# మీరు ఏమి నేర్చుకున్నారు

- పాలిమర్లు, సింథటిక్ లేదా సహజ మూలం యొక్క మోనోమర్ల పునరావృత యూనిట్లను కలిగి ఉండే అధిక పరమాణు ద్రవ్యరాశి స్థూల పరిమాణ అణువులు.
- సింథటిక్ పాలిమర్లు వాటి కూర్పు, పాలిమరైజేషన్ మోడ్ మరియు పరమాణు శక్తుల స్వభావానికి సంబంధించి వర్గీకరించబడ్డాయి.
- పాలిమరైజేషన్ రెండు వర్గాలుగా వర్గీకరించబడింది (i) అదనంగా పాలిమరైజేషన్ (ii) కండెన్సేషన్ పాలిమరైజేషన్.
- ఏ చిన్న అణువులను తొలగించకుండా పెద్ద సంఖ్యలో మోనోమర్లను జోడించడం ద్వారా అదనపు పాలిమర్లలు ఏర్పడతాయి.
- H2O, NH3 మొదలైన చిన్న అణువుల తొలగింపు ద్వారా ఘనీభవన పాలిమర్లు ఏర్పడతాయి.
- సహజ రబ్బరు అనేది ఐసో(పేస్ యొక్క లీనియర్ పాలిమర్, మరియు సల్ఫర్తో వేడి చేయడం ద్వారా వల్కసీకరించబడుతుంది, ఇది వివిధ గొలుసుల మధ్య క్రాస్ లింక్న ఏర్పరుస్తుంది.
- వల్మనైజ్ద్ రబ్బరు చాలా మెరుగైన భౌతిక లక్షణాలను కలిగి ఉంది.
- సింథటిక్ రబ్బర్లు సాధారణంగా ఆల్కెస్ మరియు 1,3–బ్యూటాడిస్ ఉత్పన్నాల కోపాలిమరైజేషన్ ద్వారా పొందబడతాయి.
- సింథటిక్ పాలిమర్లు క్షీణతకు జడత్వం కారణంగా పర్యావరణ సమస్యలను సృష్టించాయి
- బయోపాలిమర్లు ఎంజైమ్గా అధోకరణం చెందుతాయి కాబట్టి, ఈస్టర్, అమైడ్ మొదలైన ఫంక్షనల్ గ్రూపులను కలిగి ఉన్న సింథటిక్ బయోడిగ్రేడబుల్ పాలిమర్లు ప్రత్యామ్నాయాలుగా అభివృద్ధి చేయబడిన కుట్లు, ఇంప్లాంట్లు, డ్రగ్ రిలీజ్ మెటీరియల్ల వంటి సంభావ్య వినియోగాన్ని కలిగి ఉంటాయి. ఉదాహరణకు, PHBV, PLA, మొదలైనవి అటువంటి పదార్థాలను కలిగి ఉంటాయి.

QUESTIONS:

- 1) చైన్ గ్రోత్ మరియు స్టెప్ గ్రోత్ పాలిమరైజేషన్ మధ్య వ్యత్యాసాన్ని వివరించండి.
- 2) థర్మో సెట్టింగ్ మరియు థర్మో ప్లాస్టిక్స్ అనే పదాలను నిర్వచించండి. ఒక్కొక్కదానికి ఒక ఉదాహరణ ఇవ్వండి.
- 3) కోపాలిమర్ అంటే ఏమిటి. ఒక ఉదాహరణ చెప్పండి.
- 4) ప్రతి ఒక్క ఉదాహరణ సహాయంతో అడిషన్ పాలిమర్ మరియు కండెన్సేషన్ పాలిమర్ మధ్య తేదాను గుర్తించండి?
- 5) ఎలాస్టోమర్లు అంటే ఏమిటి? Buna-S తయారీకి రసాయన సమీకరణాన్ని ఇవ్వండి.
- 6) కింది పాలిమర్ల కోసం అడిగిన సమాచారాన్ని ద్రాయండి:
  - i) నియోర్రేషన్: తయారీకి అవసరమైన పదార్శాలు
  - ii) PVC : మోనోమర్ యూనిట్లు.
  - iii) సింథటిక్ రబ్బరు : మోనోమర్ యూనిట్లు
- 7) రబ్బరు వల్కనీకరణ అంటే ఏమిటి? వల్మనైజ్డ్ రబ్బరు యొక్క ప్రయోజనాలు ఏమిటి?
- 8) రెండు ప్లాస్టిసైజర్ల ఉదాహరణలు ఇవ్వండి.
- 9) ఇంటర్మోలిక్యులర్ శక్తుల ఆధారంగా పాలిమర్లను వివిధ వర్గాలుగా ఎలా వర్గీకరించారు? ఈ వర్గాలలో ప్రతి ఒక్కటి పాలిమర్ యొక్క ఉదాహరణను ఇవ్వండి.
- 10) బయోడిగ్రోడబుల్ పాలిమర్లు అంటే ఏమిటి? మూడు ఉదాహరణలు ఇవ్వండి.
- 11) కింది పాలిమర్ల మోనోమర్ల పేర్లు మరియు నిర్మాణాలను వ్రాయండి :
  - a) పాలీస్టైరిస్ b) టెఫ్లాన్ c) PMMA
  - d) PVC e) PHBV f) పాలీప్రొ ఫైలిన్
- 12) మీరు కింది వాటిని ఎలా సిద్దం చేస్తారు? రసాయన ప్రతిచర్యను మాత్రమే ఇవ్వండి:
  - a) PVC b) Nylon-66 c) PMMA

#### ANSWERS:

#### 33.1

1.

- i) పాలిమర్ అనేది సారూప్య లేదా వివిధ రకాల చిన్న అణువుల అంతర్–మాలిక్యులర్ కలయికల ద్వారా పొందిన అణువు పంటి గెయిస్ట్ చెయిస్.
- ii) మోనోమర్లు తక్కువ పరమాణు ద్రవ్యరాశి సాధారణ అణువులు, ఇవి పాలిమర్లు అని పిలువబడే లాభదాయక అణువులను అందించడానికి ఇంటర్–మాలిక్యులర్ లింకేజీని ఏర్పరుస్తాయి.

2.

i) పాలిథిన్ ii) బెరెలీన్

- 3.
  - i) హూమ్పాలిమర్లు ఒకే మోనోమర్ యూనిట్లతో తయారు చేయబడిన పాలిమర్లు, ఉదాహరణకు, పాలిథిన్, పాలీస్టైరిన్ లేదా పాలీబుటాడిన్.
  - ii) కోపాలిమర్ అనేది రెండు మోనోమర్ల సహ–పాలిమరైజేషన్ ద్వారా ఏర్పడినది. ఉదాహరణకు, బునా (orSBR, స్టైరిన్–బ్యూటాడిన్ రబ్బర్)
- 4.

i) ఇథలీన్ గ్లైకాల్ మరియు టెరెఫ్తాలిక్ యాసిడ్ ii) హెక్సా మెథలీన్ డైమైన్ మరియు అడిపికాసిడ్.

#### 33.2

- 1.
  - i) సహజ పాలిమర్లు ప్రకృతిలో కనిపిస్తాయి, (జంతువులు మరియు మొక్కలలో) ఉదా. ప్రోటీన్లు మరియు న్యూక్లియిక్ ఆమ్లాలు.
  - ii) సింథటిక్ పాలిమర్లు మానవ నిర్మితమైనవి. ఉదా నైలాన్, పాలిస్టర్లు మరియు రబ్బర్లు.
- 2.త్రిమితీయ నెట్వర్క్ నిర్మాణాన్ని రూపొందించడానికి లీనియర్ పాలిమర్ గొలుసులు క్రాస్ లింక్ చేయబడిన పాలిమర్లను క్రాస్–లింక్డ్ పాలిమర్లు అంటారు. ఈ రకమైన పాలిమర్ యొక్క సాధారణ ఉదాహరణ బేక్ లైట్.
- 3.థర్మోప్లాస్టిక్లలు థర్మో సెట్టింగ్ ప్లాస్టిక్లల నుండి రింకేజ్ మోడ్ మరియు ఇంటర్మోలిక్యులర్ ఫోర్స్ల్ పరంగా భిన్నంగా ఉంటాయి. థర్మోప్లాస్టిక్ పాలిమర్ను కావలసిన ఆకృతిలో అచ్చు వేయవచ్చు కానీ థర్మో సెట్టింగ్ పాలిమర్లు వేడి చేయడంపై ఆకృతికి సెట్ చేయబడతాయి మరియు అచ్చు వేయబడవు.
- 4.పాలిథిన్ <Buna-S < నైలాన్ఫ్-66 నైలాన్-66: ఘనీభవనం పాలిమర్ Buna-S : అడిషన్ పాలిమర్ పాలిథిన్ : అడిషన్ పాలిమర్

33.3

1. Monomer of natural rubber 2. Monomer of Neoprene

CH,  $CH_{-} = C - CH = CH_{-}$ Isoprene 2-methylbuta-1,3-diene

 $CH_2 = CH_2 - C - CH = CH_2$ Chloroprene 2-Chlorobuta - 1,3-diene

2. సల్ఫర్ రబ్బరును మరింత సాగేలా, మరింత సాగే, తక్కువ ప్లాస్టిక్ మరియు అంటుకునేలా చేస్తుంది 3. సోడియం మెటల్ సమక్షంలో బ్యూటాడిస్ మరియు స్టైరీస్ యొక్క సహ–పాలిమరైజేషస్ ద్వారా Buna-S పొందబడుతుంది. బు స్టాండ్ బ్యూటాడిన్, na అంటే సోడియం మరియు s స్టాండ్ స్టైరిన్, దీనిని S.B.R అని కూడా అంటారు.

4.

- i) సహజ రబ్బరు మృదువైనది మరియు జిగటగా ఉంటుంది, కానీ వల్మనైజ్ చేయబడిన రబ్బరు గట్టిగా మరియు అంటుకునేది కాదు.
- ii)సహజ రబ్బరు తక్కువ తన్యత శక్తిని కలిగి ఉంటుంది, అయితే వల్మనైజ్డ్ రబ్బరు అధిక తన్యత బలాన్ని కలిగి ఉంటుంది.
- iii)సహజ రబ్బరు ఈథర్, కార్బొంటెట్రా క్లోరైడ్, పెట్రోల్ మొదలైన ద్రావకాలలో కరుగుతుంది, అయితే వల్మనైజ్ చేయబడిన రబ్బరు అన్ని సాధారణ ద్రావకాలలో కరగదు.

33.4

- 1. పాව්ಮಿಥ಼ెల్మెథాక్రిలేట్ (PMMA)
- 2. ఇథలీన్ గైకాల్ మరియు టెర్త్రాలిక్ యాసిడ్.
- నైలాన్-6, 6 రెందు మోనోమర్ యూనిట్లు అడిపికాసిడ్ మరియు హెక్సామెథెలిన్ డైమైన్ యొక్క పాలిమరైజేషన్ ద్వారా సంశ్లేషణ చేయబడుతుంది.

$$nH_2N$$
 (CH₂)₆ NH₂ + n HOOC (CH₂)₄ COOH  $\xrightarrow{\Delta}$ 



4. 1) GLYPTAL



2) TEFLON

$$n \operatorname{CF}_{2} = \operatorname{CF}_{2} \xrightarrow{(\operatorname{NH}_{4})_{2} \operatorname{S}_{2} \operatorname{O}_{8}} \xrightarrow{(\operatorname{CF}_{2} - \operatorname{CF}_{2} - \operatorname{CF}_{2})_{n}}$$

5. పాలిమర్ యొక్క PDI విలువ ఒకటి. ఇది ఒక రకమైన మోనోమర్ ద్వారా నిర్మించబడినప్పుడు.

33.5

- PHBV అనేది 3-హైడ్రాక్సీ బ్యూటానోయిక్ ఆమ్లం మరియు 3-హైడ్రాక్సీ పెంటనోయిక్ ఆమ్లం యొక్క కోపాలిమర్. ఇది గుళికలను గుర్తించడంలో ఉపయోగించబడుతుంది. ఇది (పకృతిలో జీవఅధోకరణం చెందుతుంది.
- 2. న్యూక్లియిక్ ఆమ్లాలు, ప్రోటీన్లు.
- సూక్ష్మ సంస్థలచే అధోకరణం చెందే పారిమర్లను బయోడిగ్రేడబుల్ పారిమర్లు అంటారు. ఉదాహరణకు, PHBV, పారిగ్లైకోరిక్ ఆమ్లం, పారిలాక్టిక్ ఆమ్లం మొదలైనవి.
- 4. పాల్గీగ్లైకోలిక్ యాసిడ్ (PGA) మరియు పాలీ లాక్టిక్ యాసిడ్ (PLA).

# 34.B రంగులు, పెయింట్లు మరియు పిగ్మెంట్స్

ఈ పాఠంలో మనం రసాయన పరిశ్రమ యొక్క మరొక విస్తృత ప్రాంతాన్ని తీసుకుంటాము, అవి; రంగులు, పెయింట్లు మరియు పిగ్మెంట్లు. ఇవి సేంద్రీయ లేదా అకర్బన పదార్థాలు, ఇవి రంగు బట్టలు, తోలు, భవనాలు, ఫర్నిచర్ మరియు ఇతర వస్తువులను అందించడంలో అనువర్తనాలను కనుగొంటాయి. మనస్తత్వవేత్తలు ఒక వ్యక్తి యొక్క రంగుల ఎంపికకు మరియు అతని/ఆమె మానసిక స్థితికి ప్రత్యేక ప్రాముఖ్యతను ఇస్తారు.

#### లక్ష్యాలు

ఈ పాఠాన్ని చదివిన తర్వాత మీరు వీటిని చేయగలరు:

- రంగులు, పెయింట్లు మరియు పిగ్మెంట్లను నిర్వచించడం
- డైస్, పెయింట్స్ మరియు పిగ్మెంట్ల ఫార్ములా లేదా కూర్పు రాయడం
- అద్దకం ప్రక్రియను వివరించండి మరియు వివిధ రంగులను వర్దీకరించడం
- రంగులు, పెయింట్లు మరియు పిగ్మెంట్ల మధ్య తేదా రాయదం.
- పెయింట్స్ మరియు పిగ్మెంట్లను వర్గీకరించడం
- రంగుల యొక్క వివిధ ఉదాహరణలను జాబితా చేయండి: ఇండిగో, మిథైలోరెంజ్, అనిలిన్ పసుపు, అలిజారిన్ మరియు మలాకైట్ ఆకుపచ్చ మరియు మొదలైనవి మరియు
- వివిధ రంగులు, పెయింట్లు మరియు పిగ్మెంట్ల ఉపయోగాలు జాబితా చేయడం.

#### 34.1 రంగులు

ప్రారంభ కాలంలో మొక్కలు మరియు కీటకాల వంటి సహజ వనరుల నుండి రంగు పదార్ధాలు సంగ్రహించబడ్డాయి. ఇప్పుడు అటువంటి పదార్ధాలలో రోజుకు వెయ్యికి పైగా పెద్ద ఎత్తున కర్మాగారాల్లో సంశ్లేషణ చేయబడుతున్నాయి. రంగులు అనేది వస్త్రాలు, ఆహార పదార్ధాలు, పట్టు, ఉన్ని మరియు ఇతర వస్తువులకు రంగును అందించడానికి ఉపయోగించే కర్బన సమ్మేళనాలు. రంగులు బట్టలు/వస్తువులకు శాశ్వతంగా స్థిరపడగలవు మరియు నీరు, సబ్బు, కాంతి, అమ్లం మరియు క్షారాల చర్యకు నిరోధకతను కలిగి ఉంటాయి. ప్రతి రంగు సమ్మేళనం రంగుగా ఉపయోగించబడదు. మంచి రంగు తప్పనిసరిగా కింది లక్షణాలను కలిగి ఉండాలి.

- 1) దానికి తగిన రంగు ఉండాలి.
- 2) ఇది తప్పనిసరిగా స్వయంగా పరిష్మరించగలగాలి లేదా ద్రావణం నుండి ఫాటిక్ కు స్థిరంగా ఉండే సామర్థ్యాన్ని కలిగి ఉండాలి.
- 3) స్థిరంగా ఉన్నప్పుడు, అది వాషింగ్ సమయంలో కాంతి, నీరు, సబ్బు, డిటర్జెంట్లు మొదలైన వాటి చర్యకు లేదా డ్రై

క్లీనింగ్ సమయంలో సేంద్రీయ ద్రావకాలకి వేగంగా నిరోధకతను కలిగి ఉండాలి.

# 34.1.1 రంగులు లేదా రంగులు వేసిన వస్తువులు లక్షణ రంగును ఎందుకు కలిగి ఉంటాయి?

ఒక అణువు ఆకుపచ్చ రంగుకు అనుగుణంగా కనిపించే ప్రాంతంలో (400 nm నుండి 730 nm వరకు) కొద్దిగా గ్రహించినట్లయితే, అది ఆకుపచ్చ రంగుకు అనుబంధంగా ఉండే వైలెట్గా కనిపిస్తుంది. అదే విధంగా, ఒక రంగు నీలం రంగును గ్రహిస్తే, అది పసుపు రంగులో కనిపిస్తుంది, ఇది నీలం రంగు యొక్క పరిపూరకరమైన రంగు. అందువలన, రంగులు పరిపూరకరమైన రంగును అబ్సార్బ్ చేయడం ద్వారా బట్టకు రంగును అందిస్తాయి.

### 34.1.2 రంగులలోని భాగాలు

సమ్మేళనం యొక్క రంగు బహుళ బంధాలను కలిగి ఉన్న నిర్దిష్ట సమూహాల ఉనికి కారణంగా ఉంటుంది. సమ్మేళనానికి రంగును అందించే ఈ సమూహాలను (కోమోఫోర్స్ అంటారు. (కోమోఫోరేసస్ యొక్క కొన్ని ఉదాహరణలు: -NO₂ (నైట్రో), -N=O (నైట్రోసో), -N=N- (అజో), క్వినోనాయిడ్ నిర్మాణాలు మొదలైనవి. అదే సమయంలో, కొన్ని సమూహాలు ఉన్నాయి, అవి స్వయంగా (కోమోఫోర్లు కావు, అయితే అవి రంగు సమ్మేళనాలతో ఉన్నప్పుడు రంగును మరింతగా పెంచుతాయి. రంగు సమ్మేళనం యొక్క రంగును లోతుగా చేసే సమూహాలను ఆక్సోక్రోమ్లు అంటారు. సాధారణ ఆక్సోక్రోమ్లకు కొన్ని ఉదాహరణలు:

-OH₂, -NH₂, -NHR, -NR₂, -Cl, -COOH, మొదలైనవి.

# 34.1.3 రంగుల వర్గీకరణ

వివిధ ప్రయోజనాల కోసం పెద్ద సంఖ్యలో రంగులు ఉపయోగించబడతాయి. వీటిని వాటి ఆధారంగా వర్గీకరించారు

i) రాజ్యాంగం ii) అప్లికేషన్

### i) వర్గీకరణ:

లక్షణ నిర్మాణ యూనిట్లపై ఆధారపడి, రంగులు, టేబుల్ 34.1లో ఇవ్వబడిన విధంగా వర్గీకరించబడ్డాయి:

Dye type	Characteristicstructural unit	Typical examples
1) Nitro dyes	- NO ₂	OH NO,
		Maritus Yellow (2,4-dinitro-1-naphthol)

పట్టిక: 34.1: కొన్ని రంగులు వర్గీకరణ



# ఇంటెక్న్ ప్రశ్నలు 34.1

- 1) మిథైల్ ఆరెంజ్ యొక్క నిర్మాణ యూనిట్ ఏది?
- 2) స్పెక్టం కనిపించే ప్రాంతం యొక్క తరంగదైర్హం పరిధి ఎంత?
- 3) కాంప్లిమెంటరీ కలర్స్ అంటే ఏమిటి?

4) రంగు యొక్క ఆకృతి దాని రంగుతో ఎలా సంబంధం కలిగి ఉంటుంది?

ii) ఉపయోగాల ఆధారంగా రంగుల వర్గీకరణ

రంగులు వాటి అప్లికేషన్ ఆధారంగా క్రింది రకాలుగా వర్గీకరించబడ్డాయి.

- i) యాసిడ్ రంగులు
- ii) ప్రాథమిక రంగులు
- iii) ప్రత్యక్ష రంగులు
- iv) డిస్పెర్స్ రంగులు
- v) ఫైబర్ రియాక్టిప్ రంగులు
- vi) వ్యాట్ రంగులు
- vii) కరగని అజో రంగులు
- viii) మోర్డాంట్ రంగులు

#### i) యాసిద్ రంగులు

ఇవి సల్ఫోనిక్ యాసిడ్ (-SO₃H) కార్బాక్సిలిక్ యాసిడ్ (-COOH) లేదా ఫినాల్ యొక్క సోడియం ఉప్పు రూపంలో ఉపయోగించే అజో రంగులు. రంగు ఉన్ని, పట్టు మరియు నైలాన్కు వర్తించవచ్చు. ఇవి పత్తికి పెద్దగా అనుబంధాన్ని కలిగి ఉండవు కాబట్టి, OHకి రంగు వేయడానికి ఉపయోగించలేము. యాసిడ్ డై యొక్క సాధారణ ఉ దాహరణలు నారింజ-I మరియు కాంగో ఎరుపు.



#### ii) ప్రాథమిక రంగులు

ఈ రంగులు (-NH₂) సమూహం (-NR₂) సమూహం వంటి ప్రాథమిక సమూహాలను కలిగి ఉంటాయి కాబట్టి వీటిని ప్రాథమిక రంగులు అంటారు. ఈ రంగులు బట్టలపై ఉండే అయానిక్ సైట్లపై దాడి చేసి వాటికి అతుక్కుపోతాయి. వీటిని సవరించిన నైలాన్లు, పాలిస్టర్, ఉన్ని, పత్తి, తోలు, కాగితం మొదలైన వాటికి రంగు వేయదానికి ఉపయోగిస్తారు. అనిలిన్ పసుపు, మలాకైట్ ఆకుపచ్చ మరియు క్రిస్టల్ వైలెట్ ప్రాథమిక రంగులు.

## iii) డైరెక్ట్ డైన్

పేరు సూచించినట్లుగా, ఈ రంగులను వాటి సజల ద్రావణం నుండి నేరుగా బట్టలకు వర్తించవచ్చు. (పత్యక్ష రంగులు హైద్రోజన్ బంధం ద్వారా ఫైబర్కు జోడించబడతాయి. చనిపోతున్న పత్తి, ఉన్ని మరియు రేయాన్లకు ఇవి చాలా ప్రభావవంతంగా ఉంటాయి. మార్టియస్ పసుపు (బేబుల్ 34.1) మరియు కాంగో ఎరుపు ప్రత్యక్ష రంగులకు సాధారణ ఉదాహరణలు.

# iv) అజో రంగులు లేదా ఇంగ్రెయిన్ రంగులు

ఈ రంగులు చాలా ముఖ్యమైనవి ఎందుకంటే ఉపయోగించిన రంగులలో 60% పైగా అజో రంగులు లేదా ఇంగ్రెయిస్ రంగులు. రంగు వేయవలసిన బట్టను ఫినాల్ లేదా నాఫ్ధాల్ యొక్క ఆల్కలీస్ ద్రావణంలో ముంచి, డయాజోటైజ్డ్ అమైన్ ద్రావణంతో చికిత్స చేస్తారు. వీటిని పత్తి, పట్ట, పాలిస్టర్ మరియు నైలాన్ కోసం ఉపయోగిస్తారు. పరస్పర చర్య ఉపరితలంపై మాత్రమే ఉన్నందున రంగు చాలా వేగంగా లేదు. ఉదాహరణకు, పారా–రెడిసానిన్ గ్రెయిస్ డై.



### v) డిస్పర్స్ డైస్

ఈ రంగులు సాధారణంగా చక్కగా విభజించబడిన రంగు యొక్క వ్యాప్తి రూపంలో వర్తించబడతాయి. రంగులు సబ్బు ద్రావణంలో ఫినాల్, (క్రెసోల్ నుండి బెంజోయిక్ అమ్లం సమక్షంలో చెదరగొట్టబడతాయి. వీటిని నైలాన్, పాలిస్టర్ మరియు పాలీయాక్రిలోనిటైల్ కోసం ఉపయోగిస్తారు. డిస్పర్స్ డైస్కి ఉదాహరణ డిస్పర్ట్స్ ఆరెంజ్ –1 అజౌడై

# (vi) రియాక్టివ్ రంగులు

ఈ రంగులు కోలుకోలేని రసాయన ప్రతిచర్యల ద్వారా ఫైబర్కు అంటుకుంటాయి. ఈ రంగులు ఫైబర్లపై వేగవంతమైన రంగును (పేరేపిస్తాయి, ఇవి ఎక్కువ కాలం ఉంచబడతాయి. ఈ రంగులు పత్తి, ఉన్ని లేదా పట్టు వంటి ఫైబర్లకు రంగు వేయడానికి ఉపయోగిస్తారు. 2,4 డైక్లోరో – 1,3,5 – ట్రియాజైన్ ఉత్పన్నాలు అయిన రంగులు ఫైబర్ రియాక్టివ్ డైలకు ముఖ్యమైన ఉదాహరణలు.

# (vii) వ్యాట్ రంగులు

వ్యాట్ రంగులు బాగా తెలిసిన రంగులు, అవి నీటిలో కరగవు మరియు అందువల్ల నేరుగా చనిపోవడానికి ఉ పయోగించబడవు. అందువల్ల, అవి సోడియం హైడ్రోజన్ సల్ఫైట్ యొక్క ఆల్మలీన్ ద్రావణం వంటి ద్యూసింగ్ ఏజెంట్తో పెద్ద చెక్క వాట్లలో రంగులేని కరిగే రూపానికి (ల్యూకో) తగ్గించబడతాయి. ఈ పరిస్థితులలో, ల్యూకో రూపం సెల్యులోజ్ ఫైబర్తో అనుబంధాన్ని అభివృద్ధి చేస్తుంది. అప్పుడు ఫాట్రిక్ గాలికి బహిర్గతమవుతుంది, ఇది ల్యూకో (రంగులేని) రూపాన్ని రంగు రూపంలోకి ఆక్సీకరణం చేస్తుంది. అందువల్ల, ఈ రంగులు ప్రధానంగా పత్తి ఫైబర్లకు రంగు వేయడానికి ఉపయోగిస్తారు. ఈ రకమైన F (టేబుల్ 34.1)కి ఇండిగో ఒక ముఖ్యమైన ఉదాహరణ.

# (viii) మోర్దాంట్ రంగులు

ఈ రంగులు ఫైబర్కు ఫిక్సింగ్ చేయదానికి అదనపు పదార్ధం (సాధారణంగా ఒక మెటల్ అయాన్) అవసరం. వీటిని ప్రధానంగా ఉన్ని రంగు వేయదానికి ఉపయోగిస్తారు. ఈ పద్ధతిలో బట్టలపై నిర్దిష్ట మోర్డెంట్ పదార్థం (బైండింగ్ ఏజెంట్) అవపాతం ఉంటుంది, ఇది రంగుతో కలిపి సరస్సు అని పిలువబడే కరగని రంగుల సముదాయాన్ని ఏర్పరుస్తుంది. యాసిడ్ రంగుల కోసం, లోహ అయాన్లను మోర్డెంట్లుగా ఉపయోగిస్తారు కానీ ప్రాథమిక రంగుల కోసం, టానిక్ యాసిడ్ వాటిని లేదా దాంట్గా ఉపయోగిస్తారు.

ఉదాహరణకు, అలిజారిన్ ఒక మోర్డెంట్ డై (టేబుల్ 34.1).

ఇది  ${\sf Al}^{3+}$ తో గులాబీ ఎరుపు రంగును మరియు  ${\sf Ba}^{2+}$ తో నీలం రంగును, క్రోమియంతో గోధుమ ఎరుపు రంగును ( ${\sf Cr}^{3+}$ ) మరియు ఐరన్ మోర్డెంట్తో నలుపు రంగు వాయిలెట్ను ఇస్తుంది.

# ఇంటెక్స్తో ప్రశ్నలు 34.2

1. బట్టలకు మోర్డాంట్ రంగులు ఎలా వర్తించబడతాయి?

.....

2. వ్యాట్ డైకి ఉదాహరణ ఇవ్వండి.

.....

3. ఆమ్ల మరియు ప్రాథమిక రంగుల మధ్య తేదాను గుర్తించండి?

.....

4. అజోడీలు ఫాటిక్లకు ఫాస్ట్ రంగులను ఎందుకు ఇవ్వవు?

.....

ఇప్పుడు మనం వర్ణద్రవ్యాల గురించి మాట్లాడుతాము.

### 34.2 పిగ్మెంట్లు

వర్ణదవ్యం వివిధ సేంద్రీయ మరియు అకర్బన కరగని పదార్ధాలు, ఇవి ఉపరితల పూతలుగా విస్త్రతంగా ఉ పయోగించబడతాయి. వారు సిరా, ప్లాస్టిక్, రబ్బరు, సిరామిక్, కాగితం మరియు లినోలియం పరిశ్రములలో కూడా పని చేస్తారు. వర్ణదవ్యం పరిశ్రమ సాధారణంగా పెయింట్లతో సంబంధం కలిగి ఉంటుంది, కానీ వాస్తవానికి ఇది ఒక ప్రత్యేక పరిశ్రమ. పెయింట్స్ యొక్క వాణిజ్య తయారీ కోసం పెద్ద సంఖ్యలో పిగ్మెంట్లు తవ్వబడతాయి లేదా తయారు చేయబడతాయి. సుమారు 45 సంవత్సరాల క్రితం, తెల్ల సీసం [2Pb CO₃+ Pb (OH)₂], జిన్కాక్చైడ్ (ZnO) మరియు లిథోపోన్ (ZnS + BaSO₄) ప్రధాన తెల్లని వర్ణదవ్యం, అయితే రంగు ఎరుపు వర్ణదవ్యం ప్రష్యన్ బ్లూ, లెడ్ (కోమేట్లు, వివిధ ఐరన్ ఆక్రైడ్లు మరియు కొన్ని సరస్సు రంగులను కలిగి ఉంటుంది. వివిధ వర్ణద్రవ్యాల కూర్పు, లక్షణాలు మరియు ఉపయోగాలు తదుపరి విభాగంలో చర్చించబడతాయి.

# పిగ్మెంట్ల వర్గీకరణ

వర్ణద్రవ్యం విస్త్రతంగా రెండు రకాలుగా వర్గీకరించబడింది:

1.వైట్ పిగ్మెంట్స్ 2.కలర్ పిగ్మెంట్స్

తెలుపు వర్ణదవ్యం వివిధ రకాలు. వాటి కూర్పు, లక్షణాలు మరియు అప్లికేషన్లు టేబుల్ 34.2లో వేసవిలో ఇవ్వబడ్డాయి:

S.No.	Name of pigment	Composition	Characteristic	Application or Uses
1.	White lead 2PbCO ₃ .Pb(OH) ₂	PbCO ₃ =68.9% Pb(OH) ₂ =31.1%	<ol> <li>1.Easily applied</li> <li>2.high covering power</li> <li>3.Toxic in nature</li> <li>4.Yellow badly on</li> <li>exposure to atmosphere</li> <li>5.Soluble in alkali and</li> <li>paints</li> </ol>	In manufacture of paints.
2.	Sublimed White lead (Basic sulphate)	$PbSO_4 = 75\%$ PbO = 20% ZnO = 5%	<ol> <li>High specific gravity and refractive index.</li> <li>Slow chalking out of the film producing a rouch surface.</li> </ol>	In manufacture of aints
3.	Zinceoxide (ZnO)	ZnO = 100%	<ol> <li>Brilliantly white having excellent texture</li> <li>Causes no discoloration even in contact with CO₂ gas.</li> <li>More durable in Combination with white lead</li> </ol>	<ol> <li>It is opaque to UV light and thus protects from uv</li> <li>Chalkingcan be prevented.</li> </ol>
4.	Lithopone (ZnS+BaSO ₄ )	ZnS=28-30% BaSO4 =72-70%	<ol> <li>Extremely fine and cheap pigment.</li> <li>Good hiding power Not as durable as white lead and zinc oxide</li> </ol>	<ol> <li>Widely used for cold water paints.</li> <li>Traffic paints.</li> <li>In floor covering and oil cloth industry</li> </ol>
5.	Titanium dioxide (TiO) ₂	TiFeO3 and TiO2 Iliminite+rutile	<ol> <li>High opacity and hiding power</li> <li>High Oil absorbing capacity</li> <li>Spreading power is almost double than that of white lead</li> <li>No tendency of chalking</li> </ol>	<ol> <li>In paints</li> <li>In Paper and textiles.</li> <li>In other industries.</li> </ol>

బేబుల్	34.2:	కొన్ని	తెల్లని	వర్ణద్రవ	్యాల	కూర్పు,	లక్షణాలు	మరియు	ఉపు	మో	ాలు	)
с ·	,	7	• , •				· . ·			1.		

# బ్లూ పిగ్మెంట్స్

అత్యంత విస్త్రతంగా ఉపయోగించే నీలం వర్ణదవ్యం అల్టామెరైన్ బాలా. అల్టామెరైన్లో బాలా, వైట్ మరియు గీన్ అనే మూడు రకాలు ఉన్నాయి. నీలి వర్ణదవ్యం యొక్క తులనాత్మక అధ్యయనం టేబుల్ 34.3లో ఇవ్వబడింది: టేబుల్ 34.3: కొన్ని నీలి వర్ణదవ్యాల కూర్పు, లక్షణాలు మరియు ఉపయోగాలు

S.No.	Name of pigment	Composition	Characteristic	Application or Uses
1.	Ultra marine Blue	White - $Na_5Al_3Si_3SO_{12}$ Green- $Na_5Al_3Si_3S_2O_{12}$ Blue- $Na_5Al_3Si_2S_3O_{12}$	1.Silicate skeleton have a potential influence on the colour. Colour on the colour. Colour in due to the fact that is present in the form of poly sulphide	Bluring in laundering to neutralize the yellowish tone in cotton and linen fabrics.
2.	Cobalt Blues	Co ₃ O ₄ - 30 – 35 % Al ₂ O ₃ - 65-70 %	Very expensive and are not used in paints for ordinary purposes	<ol> <li>In manufacture of blue paints</li> <li>In aking inks</li> <li>In marking carbon papers and carbon ribbons</li> </ol>

# రెడ్ పిగ్మెంట్స్

ఎరుపు వర్ణద్రవ్యం పురాతన వర్ణద్రవ్యాలలో ఒకటి. ఇవి ప్రధానంగా ఇనుము మరియు ఉక్కు నిర్మాణాల తుప్పు పట్టడాన్ని నిరోధించడానికి ఉపయోగిస్తారు. వివిధ రకాల ఎరుపు వర్ణదవ్యాలు టేబుల్ 34.4లో వేసవిలో ఇవ్వబడ్డాయి. టేబుల్ 34.4: రెడ్ పిగ్మెంట్స్ యొక్క కూర్పు, లక్షణాలు మరియు ఉపయోగాలు.

S.No.	Name of pigment	Composition	Characteristic	Application or Uses
1.	Red Lead (Pb ₃ O ₄ )	Pb ₃ O ₄ + PbO	<ol> <li>Bright-red powder with high specific gravity</li> <li>Excellent covering power.</li> <li>Inhibitscorrosion</li> </ol>	1.For primary coat on structural steel. Inimparting red colour to the glass for making bangles.
2.	Synthetic Iron	Fe ₃ O ₄	<ol> <li>Has dark brilliant colour</li> <li>High covering power and tinting strength</li> </ol>	1.Widely used in domestic paints, enamels, floors and paints.

# (గీన్ పిగ్మెంట్స్

సాధారణంగా ఉపయోగించే ఆకుపచ్చ పిగ్మెంట్లలో రెండు రకాలు ఉన్నాయి. వాటి లక్షణాలు, కూర్పు మరియు ఉపయోగాలు టేబుల్ 34.5లో ఇవ్వబడ్డాయి:

టేబుల్ 34.5: కొన్ని గ్రీన్ పిగ్మెంట్ల కూర్పు, లక్షణాలు మరియు ఉపయోగాలు

S.No.	Name of pigment	Composition	Characteristic	Application or Uses
			1.High Power of oil absorption	
1.	Chrome Green	Cr2O3	2.It has is advan tages such as lack of brilliancy and opacity	As green pigments
2.	Chromium oxide Or Guignet's Green	[Cr ₂ O(OH) ₄ ]	<ol> <li>1.have high overing power</li> <li>2.High corrosion in hibition capacity</li> </ol>	<ol> <li>As Paint for metal surface.</li> <li>As fast non- fading green for</li> </ol>
				washable distempers

# బ్లాక్ పిగ్మెంట్స్

బ్లాక్ పిగ్మెంట్లు మంచి టిన్టింగ్ (స్టెంగ్త్త్ పాటు హైదింగ్ పవర్ను కలిగి ఉంటాయి. సాధారణ రకాలు బేబుల్ 34.6లో చర్చించబద్దాయి:

బేబుల్ 34.6: కొన్ని బ్లాక్ పిగ్మెంట్స్

S.No.	Name of pigment	Composition	Characteristic	Application or Uses
1.	Natural Black	Fe ₂ O ₃ - 94- 50%	Oil absorption power is 10 - 15 kg of	In making paints for
			linseed oil per 100 kg	
2.	Precipitated Black		High hiding Power	In cement emulsions and
3.	Carbon Black/		<ol> <li>Increases life of paints</li> <li>Good tinting strength.</li> <li>Not affected by light</li> </ol>	Used in making water
4.	Lamps Black		1.Good tinting strength 2.Resistant to high	In making black pig-
		4.0	0	
#### పసుపు రంగులు

సాధారణ పసుపు వర్ణద్రవ్యాలు టేబుల్ 34.7లో సంగ్రహించబద్దాయి: టేబుల్ 34.7: కొన్ని బ్లాక్ పిగ్మెంట్స్

S.No.	Name of pigment	Composition	Characteristic	Application or Uses
1.	Ochre	Naturally occurring yellow Fe ₂ O ₃	Fast to light and inert to chemical action	In paint industry
2.	Chrome yellow		1.Great opacity	In making yellow paints
			2. High brilliance	
			3. High hiding power	
			4. High tinting strength	

#### టోనర్లు

కరగని సేంద్రీయ రంగులను టోనర్లు అంటారు మరియు వాటిని వర్ణద్రవ్యం వలె ఉపయోగించవచ్చు. అవి చాలా ఉన్నాయి. మన్నికైనది మరియు అధిక రంగు శక్తిని కలిగి ఉంటుంది. ఉదాహరణకు, పారా రెడ్, హంసా పసుపు G (నిమ్మ పసుపు), హంసా పసుపు 10G (ప్రింరోస్ పసుపు), టోలుయిడిన్ టోనర్ మొదలైనవి వర్ణదవ్యం పరిశ్రమలో టోనర్లుగా ఉపయోగించే వివిధ రంగులు.

# వర్ణదవ్యం వలె లోహ పొడులు

కొన్ని లోహాల పొడి రూపాన్ని అలాగే కొన్ని మిశమాలను వర్ణద్రవ్యం వలె ఉపయోగిస్తారు. ఉదాహరణకు, మెత్తగా పొడి చేసిన అల్యూమినియం మరియు కాంస్య లక్కలలో వర్ణద్రవ్యం వలె ఉపయోగించబడ్డాయి. వాతావరణ తుష్పు నుండి రక్షించడానికి ఇనుము మరియు ఉక్కుపై రక్షిత పూతలకు మెత్తగా పొడి జింక్ కలిగి ఉన్న వర్ణదవ్యం ఉ పయోగించబడింది.

#### ఇంటెక్స్ ప్రశ్నలు 34.3

- 1) ఆకుపచ్చ రంగులు, వాటి కూర్పు మరియు ఉపయోగాలు జాబితా చేయండి.
- 2) కొన్ని నీలి రంగుల పేర్లను ద్రాయండి.
- 3) ఇనుము మరియు ఉక్కు వస్తువుల తుప్పును నిరోధించదానికి ఉపయోగించే వర్ణద్రవ్యం ఏది?
- 4) తెల్ల సీసం యొక్క కూర్పును ద్రాయండి.
- 5) జింక్ ఆక్షైడ్ యొక్క ఏ లక్షణం వాహనాలను రక్షిస్తుంది?

#### 34.3 పెయింట్స్ అంటే ఏమిటి?

పెయింట్స్ అనేది ఒకటి లేదా అంతకంటే ఎక్కువ పిగ్మెంట్ల టేబుల్ మెకానికల్ మిశ్రమాలు. వర్ణద్రవ్యం యొక్క ప్రధాన విధి కావలసిన రంగును అందించడం మరియు పెయింట్ ఫిల్మ్ను చొచ్చుకొనిపోయే రేడియేషన్ నుండి రక్షించడం వంటి U.V. కిరణాలు. వర్ణద్రవ్యం మరియు పొడిగింపులు వాహనం అని పిలువబడే ఎండబెట్టడం నూనెలలో నిలిపివేయబడతాయి. వాహనం లేదా డైయింగ్ ఆయిల్ అనేది ఫిల్మ్ ఫార్మింగ్ మెటీరియల్, దీనికి ఇతర పదార్ధాలు వివిధ మొత్తాలలో జోడించబడతాయి. పెయింట్ ఒక రక్షిత పూత ఇవ్వడానికి మెటల్ లేదా చెక్క ఉ పరితలంపై వర్తించబడుతుంది.

డైయర్స్ ఫిల్మ్ నిర్మాణం మరియు గట్టిపడే (పక్రియను ప్రోత్సహిస్తాయి. సన్నబడేవారు మిశ్రమం యొక్క స్నిగ్ధతను తగ్గించడం ద్వారా చలనచిత్రం యొక్క ఏకరూపతను నిర్వహిస్తారు. పెయింట్లలో ముఖ్యమైన రకాలు ఎమల్షన్ పెయింట్స్, లేటెక్స్ పెయింట్స్, మెటాలిక్ పెయింట్స్, ఎపాక్ష్రెడ్ రెసిన్ పెయింట్స్, ఆయిల్ పెయింట్స్, వాటర్ పెయింట్స్ లేదా డిస్టెంపర్స్ మొదలైనవి.

#### 34.3.1 పెయింట్స్ యొక్క భాగాలు

పెయింట్స్ యొక్క ప్రధాన భాగాలు వర్ణద్రవ్యం, నూనె (వాహనం) మరియు వివిధ కావాల్సిన లక్షణాలను అందించడానికి కొన్ని పదార్దాలు.

పిగ్మెంట్లు

వర్ణదవ్యం అనేది సేంద్రీయ లేదా అకర్బన కరగని పదార్థాలు, ఇవి ఉపరితల పూతలలో విస్తృతంగా ఉ పయోగించబడతాయి. వారు చలనచిడ్రాన్ని బలోపేతం చేయడానికి, విధ్వంసక అతినీలలోహిత కాంతిని ప్రతిబింబించడం ద్వారా చలనచిడ్రాన్ని రక్షిస్తారు.

పెయింట్లను తయారు చేయడానికి ఉపయోగించే ముఖ్యమైన వర్ణద్రవ్యాలు:

- i) తెలుపు : తెల్ల సీసం, టైటానియం దయాక్రైడ్, జింకాక్రైడ్
- ii) ఎరుపు: రెడ్లీడ్, ఐరోనాక్పైద్లు, కాడ్మియంరెడ్స్
- iii) నీలం: కోబాల్ట్బ్లూ, ఐరన్బ్లూస్ మొదలైనవి.
- iv) ఆకుపచ్చ: (కోమియాక్సైడ్, (కోమ్ ఆకుపచ్చ
- v) నలుపు : కార్బన్ నలుపు, లాంప్బాక్, ఫర్నేస్ బాక్, మొదలైనవి.
- vi) లోహాలు : కాపర్ పవర్, జింక్ దస్ట్, అల్యూమినియం మొదలైనవి.

vii) మెటల్ ప్రొటెక్టిప్ పిగ్మెంట్లు : ఎరుపు సీసం, నీలి సీసం, జింక్ మరియు ప్రాథమిక సీసం మొదలైనవి 2) ఎక్స్**టెండర్లు లేదా ఫిల్లర్ల** 

ఎక్స్ టెండర్లు లేదా ఫిల్లర్లు తక్కువ ధర పదార్థాలు. పెయింట్ ధరను తగ్గించడానికి ఇవి పెయింట్లకు

జోడించబడతాయి. ఇవి చలనచిత్రం యొక్క కవరింగ్ మరియు వాతావరణ శక్తిని పెంచడంలో వర్ణదవ్యాన్ని భర్తీ చేస్తాయి. టాల్క్, చైనా క్లే, జిప్సం, సిలికా, బరైట్, గ్లాస్ ఫ్లేక్స్, ఆస్బెస్టాస్ మరియు అన్హైదైట్ మొదలైన వాటిని పెయింట్లలో ఫిల్లర్లుగా ఉపయోగిస్తారు.

# 3) ఫిల్మ్ ఫార్మింగ్ మెటీరియల్స్

వాహనం లేదా ఫిల్మ్ ఫార్మింగ్ మెటీరియల్స్ ఉపరితల ఫూత సూత్రీకరణలలో ద్వంద్వ ప్రయోజనాన్ని అందిస్తాయి. అసంతృప్త స్థాయిని బట్టి వీటిని సాధారణంగా ఎండబెట్టడం మరియు సెమీ–ఎండబెట్టడం నూనెలు అంటారు. లిన్సీడ్ అయిల్, సోయాబీన్ ఆయిల్, టంగ్ అయిల్, కాస్టర్ అయిల్, వార్నిష్లు, కేసైన్, ఫిష్ అయిల్ మొదలైన వాటిని వాహనాలుగా లేదా ఎండబెట్టే నూనెలుగా ఉపయోగిస్తారు.

#### 4) డ్రెయర్స్

ఆక్సీకరణ మరియు పారిమరైజేషన్ ద్వారా ఫిల్మ్ ఎందబెట్టదాన్ని వేగవంతం చేయదానికి కొన్ని డ్రెయర్లు (ఇవి ఆక్సిజన్ క్యారియర్లు) పెయింట్లలో కూడా ఉపయోగించబడ్డాయి. ఇంతకుముందు, PbO డ్రెయర్గా ఉపయోగించబడింది, అయితే ఆధునిక డ్రెయర్లు Co, Mn, Pb, Zn, రెసినోలేట్, రినోలేట్ మరియు నాఫ్తేనేట్లు మొదలైనవి.

#### 5) థిన్నర్స్ లేదా డైలెంట్స్

పెయింట్ యొక్క మరొక పదార్ధం సన్నగా ఉంటుంది. ఫిల్మ్ ఫార్మింగ్ మెటీరియల్లను కరిగించడానికి మరియు మెరుగైన నిర్వహణ కోసం సాంద్రీకృత పెయింట్లను పలుచన చేయదానికి ఇది పెయింట్లకు జోడించబడుతుంది. సన్నగా జోడించిన తర్వాత, పైన్లు బ్రష్ చేయడం, (స్పే చేయడం లేదా ముంచడం ద్వారా ఉపరితలంపై మరింత సులభంగా వర్తించవచ్చు. మినరల్ స్పిరిట్స్ మరియు సాల్వెంట్స్ అంటే టర్పెంటైన్, తాజాగా వర్తించే ఫిల్మ్ యొక్క ద్రవత్వాన్ని సహేతుకమైన కాలానికి నిర్వహిస్తుంది.

#### 6) యాంటీ స్కిన్నింగ్ ఏజెంట్

పెయింట్లను బ్రష్ చేయడం, (స్పే చేయడం లేదా ముంచడం ద్వారా పెయింట్లను పూయడానికి ముందు పూర్తయిన ఉత్పత్తిని జెల్లింగ్ మరియు స్కిన్నింగ్ నిరోధించడానికి కొన్ని యాంటీ–స్కిన్నింగ్ ఏజెంట్లు కూడా పెయింట్లకు జోడించబడతాయి. పాలీహైద్రాక్సీ ఫినాల్స్ సాధారణంగా యాంటీ స్కిన్నింగ్ ఏజెంట్లగా ఉపయోగించబడతాయి.

#### 7) ప్లాస్టిసైజర్లు

ఫిల్మ్ర్ కి స్థితిస్థాపకతను అందించదానికి మరియు పెయింట్ పగుళ్లను నిరోధించదానికి పెయింట్లకు ప్లాస్టిసైజర్లు జోడించబడతాయి. రసాయనికంగా, ప్లాస్టిసైజర్లు ఎక్కువగా ఈస్టర్లు. ట్రిఫినైల్ ఫాస్ఫేట్, డైబ్యూటిల్ఫ్రాలేట్ మరియు కాస్టోరాయిల్ మొదలైన వాటిని ప్లాస్టిసైజర్లుగా ఉపయోగిస్తారు.

#### 8) రెసిన్లు:

వార్నిష్ లను సహజ లేదా సింథటిక్ రెసిన్లుగా ఉపయోగిస్తారు. సహజ రెసిన్లకు ఉదాహరణలు కోపాల్

లేదా రెసిన్, అయితే సింథటిక్ రెసిన్లు యూరియా ఫార్మాల్డిహైడ్, అక్రిలేట్, వినైల్ లేదా సిలికాన్ రెసిన్లు.

#### బైందర్లు

పూత ఉపరితలంపై పెయింట్ను పరిష్కరించడానికి బైండర్లు పని చేస్తాయి మరియు పెయింట్ చేయబడిన ఉపరితలంపై కఠినమైన, దృఢమైన మరియు నిగనిగలాడే ఫిల్మ్ను అందిస్తాయి.

# 10) ఇతర సమ్మేళనాలు

నీటి ఆధారిత పెయింట్లకు చెదరగౌట్టే ఏజెంట్లు (ఉదా. కేసిన్), యాంటీఫోమ్ ఏజెంట్లు (ఉదా. పైన్ ఆయిల్) మరియు [పిజర్వేటివ్ (ఉదా. క్లోరోఫెనాల్) కూడా అవసరం.

#### 34.3.2 పెయింట్ రిమూవర్స్

వివిధ ఉపరితల పూతలు లేదా పెయింట్లను తొలగించడానికి ఉపయోగించే పదార్థాలు లేదా పదార్థాలను పెయింట్ రిమూవర్లు అంటారు. పెయింట్ రిమూవర్లు మండేవి లేదా లేపేవి. మండే పెయింట్ రిమూవర్లు లిక్విడ్ రిమూవర్లు, సెమీ పేస్ట్ రిమూవర్ మరియు పేస్ట్ రిమూవర్లు కావచ్చు. (ప్రయోజనం కోసం ఉపయోగించే సాధారణ ద్రావకాలు మిథనాల్, ఇథనాల్ లేదా ప్రొపనాల్ వంటి ఆల్కహాల్లు. హైడ్రోకార్బన్లు (బెంజీన్, టోలున్ లేదా జిలీన్), అసిటోన్ మరియు ఇథైల్ అసిటేట్లను పెయింట్ రిమూవర్లుగా కూడా ఉపయోగిస్తారు.

#### 34.3.3 పెయింట్స్ యొక్క ప్రత్యేక అప్లికేషన్లు

సన్నని రక్షిత పొరను అందించడానికి అదనంగా, పెయింట్లు ఇతర అనువర్తనాల కోసం కూడా ఉపయోగించబడతాయి కొన్ని ప్రత్యేక ఉపయోగాలు క్రింద చర్చించబడ్డాయి:

- ఎ) యాసిడ్ రెసిస్టింగ్ కోట్లుగా పెయింట్లు విస్త్రతంగా ఉపయోగించబడతాయి.
- బి) ఆయిల్ బౌండ్ వాటర్ పెయింట్స్ లేదా డిస్టెంపర్లను గోడల ఇంటీరియర్ దెకరేషన్ కోసం విస్తృతంగా ఉపయోగిస్తారు.
- సి) మినరల్ స్పిరిట్స్లో కరిగిన బొగ్గ తారు ఉత్పత్తులు బిటుమినస్ పెయింట్స్ పేరుతో రక్షిత పూత సాఫ్ట్ పైపులుగా ఉపయోగించబద్దాయి.
- డి) తుంగ్ ఆయిల్లో చెదరగొట్టబడిన ఐరన్ ఆక్రైడ్, మెర్యూరిక్ ఆక్రైడ్ మరియు కాపర్ రెసినేట్ కలపడం ద్వారా తయారు చేయబడిన యాంటీ ఫౌలింగ్ పెయింట్ల ద్వారా నౌకల అడుగు భాగం రక్షించబడుతుంది.
- ఇ) పారాఫిన్ మైనపు, రోసిన్, బిటుమెన్ మరియు గుట్టపర్చా డిస్పర్స్ డింటుంగ్ ఆయిల్ కలపడం ద్వారా తడి నిరోధక లక్షణాలతో పెయింట్ తయారు చేయబడుతుంది.

#### ఇంటెక్న్ ప్రశ్నలు 34.4

1. పెయింట్ ధరను తగ్గించడానికి పెయింట్ యొక్క ఏ భాగం ఉపయోగించబడుతుంది?

 మైరైన్ పెయింట్లను సిద్దం చేయదానికి ఉపయోగించే యాంటీ ఫౌలింగ్ ఏజెంట్లను జాబితా చేయండి?

.....

3. ఎమల్షన్ పెయింట్స్ యొక్క మూడు లక్షణాలను (వాయండి.

.....

4. మేము ఉపరితలాలపై పెయింట్లను ఎలా వేయవచ్చు?

.....

What you have learnt?

- రంగులు వస్రాలు, ఆహార పదార్థాలు, స్టిక్, ఉన్ని మరియు ఇతర వస్తువులకు రంగును అందించడానికి ఉ పయోగించే రంగుల సమ్మేళనాలు.
- ఒక రంగు అనేది విద్యుదయస్మాంత వర్ణపటం (400 nm నుండి 700 nm) కనిపించే ప్రాంతంలో కాంతిని గ్రహించగల ఒక రంగు సేంద్రీయ సమ్మేళనం. తిరిగి ప్రతిబింబించే కాంతి భాగం రంగు యొక్క రంగును ఇస్తుంది, అంటే గ్రహించిన రంగుకు అనుబంధంగా ఉంటుంది.
- రంగులు వాటి నిర్మాణాల ఆధారంగా మరియు దరఖాస్తుల పద్ధతిపై వర్గీకరించబడ్డాయి.
- పిగ్మెంట్లు వివిధ సేంద్రీయ మరియు అనాగనిక కరగని పదార్థాలు, ఇవి ఉపరితల పూతలలో విస్తృతంగా ఉపయోగించబడతాయి.
- టైటానియం డయాక్సైడ్ చాలా ముఖ్యమైన తెల్లని వర్ణద్రవ్యం. కార్బన్ నలుపు, గ్రాఫైట్ మరియు ల్యాంప్ బ్యాక్ ప్రధాన నలుపు వర్ణదవ్యం, (కోమియం ఆక్సైడ్ (Cr₂O₃) మరియు గిగ్నెట్ యొక్క ఆకుపచ్చ రంగులు,
   (కోమ్ పసుపు, స్ట్రోంటియం (కోమేట్ మరియు బేరియం (కోమేట్ పసుపు వర్ణదవ్యం.
- కరగని సేంద్రీయ రంగులను టోనర్లుగా పిలుస్తారు మరియు వాటిని వర్ణద్రవ్యం వలె ఉపయోగించవచ్చు. అవి చాలా మన్నికైనవి మరియు అధిక రంగు శక్తిని కలిగి ఉంటాయి.
- కొన్ని పొడి రూపంలోని లోహాలు అలాగే మిశ్రమాలు కూడా వర్ణద్రవ్యం వలె ఉపయోగించబడ్డాయి.
- ఇనుము మరియు ఉక్కుపై రక్షణ పూత కోసం మెత్తగా పొడి చేసిన జింక్ ఉపయోగించబడింది.
- పెయింట్ల ఒకటి లేదా అంతకంటే ఎక్కువ పిగ్మెంట్లు, ఎక్స్ట్ పెండర్ల ఫిల్లర్లు, డ్రైయర్లు, థిన్నర్లు లేదా డైల్యూయంట్స్, లక్కర్లు, ప్లాస్టిసైజర్లు, రెసిస్లు మరియు బైండర్ల స్థిరమైన యాంత్రిక మిశ్రమాలు.
- మంచి నాణ్యత గల పెయింట్ మంచి రంగు, అధిక దాచే శక్తిని కలిగి ఉండాలి మరియు సరైన పిగ్మెంట్ వాల్యూమ్ ఏకాగ్రత పరిధి (PVC) కూడా కలిగి ఉండాలి. ఇంటి వెలుపలి పెయింట్ కోసం PVC పరిధి 28– 36% ఉండాలి.

 వార్సిష్లు పెయింట్ల నుండి విభిన్నంగా ఉంటాయి, అవి ఎటువంటి వర్ణదవ్యం కలిగి ఉండవు మరియు వార్సిష్లలో వేరుగా లేదా నూనె మొత్తం రెసిన్ ద్వారా భర్తీ చేయబడుతుంది.

Terminal exercise

- 1. డైరెక్ట్ డై యొక్క నిర్మాణం మరియు పేరు ఇవ్వండి.
- 2. వాటి నిర్మాణ యూనిట్ల ఆధారంగా రంగులను వర్గీకరించండి.
- 3. ఫినాల్ఫరీస్ యొక్క పథకం లేదా తయారీని ఇవ్వండి. ఇది (ఎ) ఆమ్ల (బి) ఆల్కరీస్ పరిస్థితులలో ఎలా ప్రవర్తిస్తుంది?
- 4. మోర్డాంట్ డైస్ అంటే ఏమిటి? డై మరియు మోర్డాంట్ మధ్య ఏ రకమైన బైండింగ్ శక్తులు ఉన్నాయి?
- 5. కింది వర్ణదవ్యాల తయారీ, లక్షణాలు మరియు ఉపయోగాలను వ్రాయండి.

i) జింకాక్నీ ii) లిథోపోన్

- 6. పెయింట్స్ యొక్క వివిధ భాగాలను మరియు వాటి ప్రాముఖ్యతను వివరించండి.
- 7. మంచి పెయింట్స్ యొక్క అవసరాలను జాబితా చేయండి.

#### ఇంటెక్స్ ప్రశ్నలకు సమాధానాలు

34.1

- 1. N=N సమూహం
- 2. స్పెక్షం యొక్క కనిపించే ప్రాంతం పరిధి [400 nm నుండి 750 nm]
- 3. రంగు అనేది ఒక కర్బన సమ్మేళనం, ఇది విద్యుదయస్కాంత వర్ణపటం (400 nm నుండి 750 nm) కనిపించే ప్రాంతంలో కాంతిని గ్రహించగలదు. తిరిగి ప్రతిబింబించే కాంతి భాగం రంగు యొక్క రంగును ఇస్తుంది, అంటే గ్రహించిన రంగుకు అనుబంధంగా ఉంటుంది.
- కొన్ని అసంతృప్త సమూహాల (బహుళ బంధాలు కలిగిన సమూహాలు) ఉనికి కారణంగా రంగు యొక్క నిర్మాణం దాని రంగుకు సంబంధించినది.

#### 34.2

- మోర్డాంట్ రంగులను ప్రధానంగా ఉన్ని రంగు వేయడానికి ఉపయోగిస్తారు. ఈ పద్ధతిలో ఫాబ్రిక్లపై సర్టియన్ పదార్ధాల (మోర్డాంట్ మెటీరియల్) అవపాతం ఉంటుంది, ఇది ఉపయోగించిన మోర్డాంట్ (డై కట్టడానికి రూపొందించిన పదార్థం) ఆధారంగా లేక్ అని పిలువబడే కరగని రంగు నుండి రంగుతో కలపబడుతుంది.
- 2. నీలిమందు
- 3. యాసిడ్ రంగులు మరియు ప్రాథమిక రంగుల మధ్య వ్యత్యాసం

Acid dyes	Basic dyes
1. There are azo dyes usually sodium salt	1. These dyes contain (-NH ₂ ) groups
of -SO ₃ H, -COOH and Phenolic group.	or (-NR2) group as oxochromes
2. The dye can be applied to wool, silk and nylon.	2. These are used to dye modified nylons, polyester, wool, leather etc.
3. Do not have any affinity for cotton.	3. Have affinity for cotton.

4.ఎందుకంటే పరస్పర చర్య ఉపరితలంపై మాత్రమే ఉంటుంది. కడిగితే రంగు పోతుంది.

#### 34.3

1. ఆకుపచ్చ రంగులు: ఎ) క్రోమ్ గ్రీన్ బి) క్రోమియం ఆక్రైడ్

ఎ) క్రోమ్ గ్రీస్ – ఇది క్రోమియం ఆక్ష్రెడ్ (Cr₂O₃) మరియు అధిక చమురు శోషణ శక్తిని కలిగి ఉంటుంది. ఇది క్రోమ్ గ్రీన్ అని పిలువబడే ఆకుపచ్చ వర్ణదవ్యం వలె ఉపయోగించబడుతుంది.

బి) క్రోమియం ఆక్షైడ్ – దీనిని గిగ్నెట్స్ గ్రీన్ అని కూడా అంటారు. ఇది హైడ్రేటెడ్ క్రోమియం ఆక్షైడ్ [Cr₂O(OH)4]. ఇది మెటల్ ఉపరితలాల కోసం పెయింట్గా మరియు ఉతికి లేక కడిగి శుభం చేయదగిన డిస్టెంపర్ల కోసం వేగంగా క్షీణించని ఆకుపచ్చగా ఉపయోగించబడుతుంది.

2.

i) అల్టామైరైన్ బ్లూ ii) కోబాల్ట్ బ్లూ మరియు ఐరన్ బ్లూ

- 3. ටිඩ් ව්ඩ්
- 4. లీడ్ కార్బోనేట్, 60.2 68.9% మరియు లెడ్ ఆక్రైడ్, 31 39.9%
- 5. ఇది తెల్లని కాంతికి అపారదర్శకంగా ఉంటుంది.

34.4

1. ఎక్స్ బెండర్లు లేదా ఫిల్లర్లు.

- 2. జింకాక్సైడ్, రెసిన్ (షెలాక్), డ్రైయర్స్ (Mnlineolate), వాహనం (బొగ్గ-తారు), పలుచన (పైన్-ఆయిల్)
- 3. i) అత్యంత మన్నికైనది ii) ధూళికి చౌరబడనిది iii) కడగడానికి నిరోధకత
- 4. i) హ్యాండ్–పెయింటింగ్ లేదా ట్రషింగ్ ii) (స్పేయింగ్ iii) డిప్పింగ్ iv) రోలర్ కోటింగ్ v) దార్లడం

# 35.B డ్రగ్స్ మరియు మెడిసిన్స్

నొప్పి మరియు వ్యాధిని జయించే ప్రయత్నంలో, పెద్ద సంఖ్యలో సింథటిక్ రసాయనాలు కనుగొనబడ్డాయి. ఔషధాలుగా ఉపయోగించే రసాయనాలను ఫార్మాస్యూటికల్స్ అంటారు. నేడు ఫార్మాస్యూటికల్ పరిశ్రమ ప్రపంచంలోని అతిపెద్ద పరిశ్రమలలో ఒకటిగా ఎదిగింది. ఈ పాఠంలో మేము మీకు డ్రగ్స్ మరియు మెడిసిన్ల ప్రాంతాన్ని పరిచయం చేయడానికి ప్రయత్నిస్తాము. ఈ ప్రక్రియలో మేము మందులు మరియు ఔషధాల మధ్య తేదాను గుర్తించడానికి ప్రయత్నిస్తాము (సాధారణంగా పరస్పరం మార్చుకోబడినప్పటికీ). మీరు ఔషధాల వర్గీకరణ మరియు మందులు మరియు ఔషధాల యొక్క ఇతర ముఖ్యమైన అంశాల గురించి కూడా నేర్చుకుంటారు.

#### లక్ష్యాలు

ఈ పాఠాన్ని చదివిన తర్వాత మీరు వీటిని చేయగలరు:

- మందులు మరియు ఔషధాలను నిర్వచించడం
- మందులు మరియు ఔషధాల మధ్య తేదా;
- ఔషధాలను వాటి చర్య (ఉపయోగం) ఆధారంగా వర్గీకరించండిబీ
- అనాల్జెసిక్స్, యాంటిపైరేటిక్, యాంటిసెప్టిక్స్, క్రిమిసంహారకాలు, యాంటాసిద్లు, యాంటీ మలేరియల్స్, అనస్తీటిక్స్, యాంటీమైక్రోబయాల్స్ (సల్ఫాడ్గ్స్ మరియు యాంటీబయాటిక్స్), యాంటీ–ఫెర్టిలిటీ డ్రగ్స్ మొదలైన వాటి ఉ దాహరణలు మరియు ప్రభావాలను నిర్వచించడం.
- అనాల్జెసిక్స్ మరియు యాంటిపైరేటిక్స్ మధ్య తేదా వివరించడం
- యాంటిసెప్టిక్స్ మరియు క్రిమిసంహారకాలు మధ్య తేదా వివరించడం
- అలవాటును ఏర్పరుచుకోవడం మరియు అలవాటు లేని దుర్ణను వివరించడం
- విస్త్రత స్పెక్టం మరియు ఇరుకైన స్పెక్టమ్ యాంటీబయాటిక్ మధ్య తేదా వివరించడం
- స్థానిక మరియు సాధారణ మత్తుమందుల మధ్య తేదా వివరించడం
- స్వీయ–మందులను మరియు
- ఔషధం యొక్క ప్రత్యామ్నాయ వ్యవస్థలు వివరించడం.

# 35.1 (దగ్స్ మరియు మెడిసిన్స్ అంటే ఏమిటి?

మనం అనారోగ్యానికి గురైనప్పుడు కొన్ని మాత్రలు, మాత్రలు, ఇంజెక్షన్లు తీసుకుంటాము లేదా బాగుపడటానికి కొన్ని లేపనాలు వేస్తాము. వీటన్నింటిని కలిపి ఔషధాలు అంటారు. కొన్నిసార్లు మనం మొక్కలలోని కొన్ని భాగాలను లేదా మూలికలు, ఖనిజాలు, జంతువులు మొదలైన వాటితో తయారు చేసిన కొన్ని పదార్థాలను ఉపయోగించవచ్చు. ఈ పదార్థాలన్నీ వ్యాధుల చికిత్స లేదా నివారణ, మందులు అని కూడా పిలుస్తారు. మందులు ఒకే రసాయనాన్ని కలిగి ఉంటాయి లేదా కావలసిన ప్రభావాన్ని కలిగి ఉండటానికి వివిధ మొత్తాలలో అనేక రసాయనాలను కలిగి ఉంటాయి. ఔషధం యొక్క రసాయనాల చర్య యొక్క విధానం చాలా వైవిధ్యమైనది మరియు సంక్లిష్టమైనది. చాలా సందర్భాలలో చర్య యొక్క విధానం మనకు పూర్తిగా తెలియకపోవచ్చు, కానీ అవి మనకు ఉపయోగపడే విధంగా వాటిని ఉ పయోగించడం కొనసాగిస్తాము.

స్రారంభ మానపుడు వ్యాధులను నయం చేయడానికి అనేక మొక్కలు లేదా మొక్కల భాగాలను ఉపయోగించాడు, దానికి కారణమైన రసాయన భాగాల గురించి తెలియకుందానే. ఉదాహరణకు విల్లో చెట్టు బెరడు నొప్పిని తగ్గించడానికి (అసనాల్జౌసిక్) ఉపయోగించబడింది. తరువాత, దాని బెరడులో 2–హైద్రాక్సీబెంజోయిక్ అమ్లం ఉందని కనుగొనబడింది, ఇది ఎసిబైల్ సాలిసిలిక్ యాసిడ్ (ఆస్పిరిస్ అని కూడా పిలుస్తారు)కి దగ్గరి సంబంధం కలిగి ఉంటుంది. రౌవోల్ఫియా సర్పెంటినా (హిందీ పేరు, సర్పగంధ) మొక్క యొక్క భాగాలు అధిక రక్తపోటు (అధిక రక్తపోటు) చికిత్స కోసం అయుర్వేద ఔషధాలలో ఉపయోగించబడ్డాయి. రెసెర్ఫైన్ అనే సమ్మేళనం రక్తపోటును తగ్గించడానికి కారణమని తరువాత కనుగొనబడింది. ఆ విధంగా రక్తపోటును నియంత్రించే మొట్టమొదటి ఆధునిక ఔషధం రెసర్ఫైన్. చాలా సందర్భాలలో ప్రకృతి ఆధునిక వైద్యం యొక్క అవిష్కరణకు దారితీసింది. ప్రపంచవ్యాప్తంగా ఉన్న వేలాది మంది రసాయన శాగ్రవేత్తలు మెరుగైన, సమర్ధవంతమైన, చౌకైన మరియు సురక్షితమైన ఔషధాల కోసం నిరంతరం శోధిస్తున్నారు. ముందే చెప్పినట్లుగా, మందులు మరియు మందులు అనే పదాన్ని పరస్పరం మార్చుకుంటారు, కానీ రెండింటి మధ్య వృత్యాసం ఉంది. ఇంకా, ఔషధంలోని రసాయన సమ్మేళనాల ప్రభావాలు మరియు వాటి దుష్పుభావాలు సరిగ్గా మరియు విస్తుతంగా అధ్యయనం చేయబడ్దాయి. ఔషధాలను డ్రగ్ కంట్రోలర్ ఆఫ్ ఇండియా వంటి సంబంధిత ప్రభుత్వ అధికారులు అమోదించారు.

మాదకద్రవ్యాలు అనే పదాన్ని పదార్ధాల కోసం కూడా ఉపయోగిస్తారు, ఇవి అలవాటును ఏర్పరుస్తాయి మరియు తరచుగా దుర్వినియోగం చేయబడతాయి, ఉదాహరణకు, కొకైన్, మార్ఫిన్, గంజాయి మొదలైన మత్తుపదార్థాలు.

#### ఇంటెక్న్ ప్రశ్నలు 35.1

1. ఔషధాల నిర్వచనాన్ని వ్రాయండి.

.....

2. మందులలో వాడే చాలా రసాయనాలు విషపూరితమైనవి. ఈ ప్రకటన నిజమా

అబద్దమా?

.....

3. ఫార్మాస్యూటికల్స్ అంటే ఏమిటి?

.....

139

అర్పగంధ మొక్కలలో ఉండే సమ్మేళనానికి పేరు పెట్టండి మరియు రక్తపోటును తగ్గించడానికి కారణమవుతుంది.
 35.2 ఔషధాల వర్గీకరణ

నొప్పిని తగ్గించదానికి, జ్వరాన్ని తగ్గించదానికి లేదా జలుబుకు చికిత్స చేయదానికి ఉపయోగించే కొన్ని సాధారణ ఔషధాల గురించి మీకు తెలిసి ఉండవచ్చు. అందువల్ల మందుల సంఖ్య చాలా పెద్దది. మందులు వాటి చర్య లేదా ఉ పయోగం (పకారం వర్గీకరించబద్దాయి. టేబుల్ 35.1 ఔషధాల యొక్క కొన్ని ముఖ్యమైన తరగతుల జాబితాను అందిస్తుంది. అనాల్జెసిక్స్, యాంటీబయాటిక్స్, యాంటిసెప్టిక్స్ మొదలైన పదాలు సాధారణ ఇంటి పదాలు. ఈ వర్గీకరణ యొక్క అర్థాన్ని కొంచెం వివరంగా అర్థం చేసుకోవడానికి (పయత్నిద్దాం.

ඩිසාව්	35.1:	ఔషధాల	యొక్క	కొన్ని	ముఖ్యమైన	తరగతులు	మరియు	వాటి	చర్య
--------	-------	-------	-------	--------	----------	---------	-------	------	------

S. No.	Class	Action or Usage
1.	Antipyretics	Reduce body temperature
2.	Analgesics	Reduce pain
3.	Antimalarials	Used for treatment of malaria
4.	Germicides	Kill germs
5.	Antiseptics tissue)	Kill germs (can be safely used on living
6.	Disinfectant	Kill germs (cannot be used on living tissue
7.	Antacids	Reduce acidity in stomach
8.	Anaesthetics	Loss of sensation
9.	Antimicrobials, Salphadurgs	
	and Antibiotics	Kill microorganisms
10.	Transquilizers and hypnotics	Reduce anxiety and bring calmness
11.	Birth Control Medicines	
	(Contraceptives)	Birth control

#### 1. యాంటిపైరేటిక్స్

యాంటిపైరెటిక్స్ అనేది శరీర ఉష్ణోగతను తగ్గించదానికి లేదా జ్వరాన్ని నియంత్రించదానికి ఉపయోగించే పదార్థాలు. యాంటిపైరేటిక్ అనే పదం పైరో నుండి ఉద్భవించింది, అంటే అగ్ని (అంటే వేడి) వ్యతిరేక అంటే వ్యతిరేకం. అందువల్ల యాంటిపైరేటిక్ అంటే అది వేడిని (అధిక శరీర ఉష్ణోగత) ప్రతిఘటిస్తుంది. ఆస్పిరిస్, పారా సెటమాల్ మరియు ఫెనా సెటిన్ సాధారణంగా ఉపయోగించే యాంటిపైరెటిక్స్ను తింటాయి. మీరు వాటిని (కోసిస్, అనాసిస్, డిస్పిస్ మొదలైన వివిధ వ్యాపార పేర్లతో గుర్తించవచ్చు.



యాస్పిరిస్ అనేది వాడుకలో ఉన్న అత్యంత ప్రసిద్ధ యాంటిపైరేటిక్. ఇది కడుపులో హైడ్రోలైజ్ చేయబడుతుంది మరియు సాలిసిలిక్ యాసిడ్ విడుదల అవుతుంది. అధిక మోతాదు మరియు ఎక్కువ కాలం ఉపయోగించడం వల్ల దుష్పభావాలు సంభవించవచ్చు. ఇది కడుపు గోడలో రక్తసావం మరియు పూతలకి కూడా కారణం కావచ్చు. అందువల్ల, అధిక మోతాదు మరియు సుదీర్ఘ ఉపయోగం ఉండాలి. అయినప్పటికీ, ఆస్పిరిస్ యొక్క కాల్షియం మరియు సోడియం లవణాలు నీటిలో ఎక్కువగా కరుగుతాయి మరియు ఆస్పిరిస్ కంటే తక్కువ హానికరం.

#### ఆస్పిరిస్ (ఎసిటైల్ సాలిసిలిక్ యాసిడ్):

#### తయారీ:

ఎసిటిక్ అహైదైడ్తో సారిసిరిక్ ఆమ్లం యొక్క ఎసిటైలేషన్ ఆస్పిరిన్ను ఇస్తుంది.



యాస్పిరిస్ యాంటీ ఇన్ళ్లమేటరీ, అనాల్జెసిక్ మరియు యాంటిపైరేటిక్గా ఉపయోగించబడుతుంది. గుండె జబ్బులను తగ్గించడానికి గుండె రోగులకు ఇది సిఫార్సు చేయబడింది. ఆస్పిరిస్ ఎక్కువగా వాడటం వల్ల వాంతులు, పొత్తికడుపు నొప్పి, చర్మంపై దద్దర్లు మొదలైనవి వస్తాయి.

# ఇబు(పోఫెస్:

#### తయారీ:

ఎసిటైలేషన్పై ఐసో బ్యూటైల్ బెంజీన్ P-iso బ్యూటిలాసెటోను ఇస్తుంది – ఇది HCNతో చికిత్స చేసినప్పుడు సైనో

హైద్రిన్లను ఇస్తుంది. HI మరియు రెడ్ ఫాస్పరస్తో చికిత్సలో సైనో హైద్రిన్లు తగ్గతాయి, ఇది తదుపరి జలవిశ్లేషణలో ఇబుప్రోఫెన్ను ఇస్తుంది.



చిన్న మోతాదులో ఇబుప్రోఫెన్ యాంటీ ఇన్ళ్రమేటరీ, యాంటీ పైరేటిక్ మరియు అనాల్జెసిక్ ద్రగ్గా ఉ పయోగించబడుతుంది. ఈ మందు దీర్ఘకాల వినియోగం వల్ల అల్సర్లు, కాలేయం దెబ్బతింటాయి.

పారాసెటమాల్ (N−ఎసిటైల్ P−అమినోఫెనాల్)

తయారీ:



P-నైట్రోఫెనాల్ మొదట p-అమినో ఫినాల్గా తగ్గించబడుతుంది. పి-అమినో ఫినాల్ గ్లేసియల్ ఎసిటిక్ యాసిడ్తో ఎసిటైలేట్ చేయబడింది మరియు ఎసిటిక్ అన్హొడైడ్ మరియు పారాసెటమాల్ ఏర్పడుతుంది. ఇది యాంటిపైరేటిక్ మరియు యాంటీ ఇన్ళ్రమేటరీ డ్రగ్గా ఉపయోగించబడుతుంది. ఈ ఔషధం యొక్క దీర్ఘకాలిక ఉ పయోగం చర్మశోథ మరియు రక్తహీనతకు కారణమవుతుంది.

#### 2. అనాల్లైసిక్స్

అనాల్జెసిక్స్ అనేది కణజాలం వాపు, గాయం, వాపు లేదా కొన్ని ఇతర రుగ్మతల వల్ల కలిగే నొప్పిని తగ్గించే పదార్గాలు. అనాల్జెసిక్స్ రెండు రకాలు, అవి నార్కోటిక్ & నాన్ నార్కోటిక్. నార్కోటిక్ అనాల్జెసిక్లలు నిద్రను (పేరేపిస్తాయి మరియు అందువల్ల నల్లమందులో ఉండే ఆల్మలాయిడ్స్ నొప్పిని తగ్గించడంలో సహాయపడతాయి, అవి, మార్ఫిస్, కోడైస్ మొదలైనవి మాదకద్రవ్యాలకు సాధారణ ఉదాహరణలు. అధిక మోతాదులో ఇవి అపస్మారక స్థితికి కారణమవుతాయి. ఇవి అలవాటును ఏర్పరుస్తాయి మరియు వ్యసనానికి కారణమవుతాయి. వ్యసనం కారణంగా, ఒక వ్యక్తి దానిని క్రమం తప్పకుండా మరియు పెద్ద మొత్తంలో కలిగి ఉండాలని కోరుకుంటాడు. అలాంటి వ్యక్తి అతను దానిని పొందకపోతే కలత మరియు అసౌకర్యంగా భావిస్తాడు. నార్కోటిక్ అనాల్జెసిక్స్ నిద్రను (బేరేపించవు మరియు అలవాటును ఏర్పరచవు. ఈ రకమైన మాదక ద్రవ్యాల యొక్క సాధారణ ఉదాహరణ మార్ఫిస్.



# 3. యాంటీమలేరియల్స్

మలేరియా చికిత్సకు యాంటీమలేరియల్ మందులు వాడతారు. క్వినైన్ మరియు క్లోరోక్విన్ విస్తృతంగా ఉ పయోగించే యాంటీమలేరియల్స్. క్వినినిసోన్ అనేది మొట్టమొదట ఒక మొక్క (సింకోనా) బెరదు నుండి పొందబడింది మరియు తరువాత ప్రయోగశాలలలో సంశ్లేషణ చేయబడింది.



# 4. యాంటిహిస్టామైన్లు

రిసెప్టర్ యొక్క బైండింగ్ సైట్లు ద్వారా హిస్టామిన్ యొక్క సహజ చర్యతో జోక్యం చేసుకునే ఔషధాలను యాంటిహిస్టామైన్లు అంటారు.

సాధారణంగా హిస్టామిన్ కడుపులో యాసిడ్ (సావాన్ని (పేరేపిస్తుంది మరియు ఇది నాసికా రద్దీ మరియు ఇంటి దుమ్ము,

పుప్పాడి మొదలైన వాటికి సంబంధించిన అలెర్జీలకు కూడా బాధ్యత వహిస్తుంది. కడుపు గోడలో హిస్టామిన్ పరస్పర చర్యను నిరోధించడానికి రానిటిడిన్ (జింటాక్) ఉపయోగించబడుతుంది. యాంటిహిస్టామైన్లు కడుపులో యాసిడ్ సావాన్ని ప్రభావితం చేయవు. ఉదా: –డిమెటాప్ మరియు టెర్పెనాడీన్ (సర్దేన్) యాంటిహిస్టామైన్లు.

యాంటిహిస్టామైన్లు నిద్రమత్త, బలహీనమైన చురుకుదనం, పని చేయగల సామర్థ్యం వంటి దుష్టుభావాలను కలిగి ఉంటాయి.





intext intext డ్రశ్నలు 35.2
. యాంటిపైరెటిక్స్ యొక్క రెండు ఉదాహరణలు ఇవ్వండి.
2. నార్కోటిక్ రకం అనాల్జెసిక్ యొక్క ఒక ఉదాహరణ ఇవ్వండి.
3. క్రిమినాశక మరియు క్రిమిసంహారక మధ్య తేదా ఏమిటి?
4. యాంటాసిడ్లు అంటే ఏమిటి? యాంటాసిడ్లుగా సాధారణంగా ఉపయోగించే రెండు రసాయనాలను పేర్కొనండి.
5. స్థానిక మత్త మరియు సాధారణ మత్తమందు మధ్య తేదా ఏమిటి.

# 6. యాంటీబయాటిక్స్ నిర్వచించండి. యాంటీబయాటిక్కు ఒక ఉదాహరణ ఇవ్వండి.

7. ఆస్పిరిన్ మరియు పారాసెటమాల్ రసాయన పేర్లను వ్రాయండి.

#### 5. జెర్మిసైద్స్, క్రిమిసంహారక మరియు క్రిమినాశక రసాయనాలు:

జెర్మిసైద్స్ అనేవి రసాయనాలు, ఇవి జెర్మ్స్ (సూక్ష్మ జీవులు) పెరుగుదలను నిరోధిస్తాయి. క్రిమినాశకాలను క్రిమినాశక మరియు క్రిమిసంహారకాలుగా వర్గీకరించారు. రెండూ సూక్ష్మజీవులను చంపేస్తాయి కాని మనం వాటిని ఉపయోగించే విధానంలో తేడా ఉంటుంది.

యాంటిసెప్టిక్స్ సూక్ష్మజీవులను చంపుతాయి మరియు జీవులపై (కణజాలం) ఉపయోగించడం సురక్షితం. యాంటిసెప్టిక్స్ గాయాలు, కోతలు లేదా చర్మ క్షీణతలపై ఉపయోగిస్తారు. ఇవి గాయాలు మొదలైన వాటిని ధరించడానికి ఉపయోగిస్తారు. ఉదాహరణకు, అయోడోఫార్మ్ (CHI₃), అయోడిన్ యొక్క టింక్చర్, ఇథైల్ ఆల్కహాల్, ఫినాల్ మరియు బోరిక్ యాసిడ్ (H₃BO₃) యొక్క 0.2 శాతం సజల ద్రావణం సాధారణ యాంటిసెప్టిక్స్. కొన్ని రంగులు సూక్ష్మజీవులను చంపే సామర్థ్యాన్ని కలిగి ఉంటాయి. ఈ రోజుల్లో యాంటిసెప్టిక్స్గా ఉపయోగించే తొలి సమ్మేళనాలు. ఉదాహరణలు అక్రిప్దేవిన్ (పసుపు రంగు రంగు), మెర్కురోక్రోమ్ (ఎరుపు రంగు రంగు), మిథిలిన్ బ్లూ (నీలం రంగు రంగు). ఈ రంగులు ఇప్పటికీ యాంటిసెప్టిక్స్గా వాడుకలో ఉన్నాయి.

అయోడిస్ ఒక శక్తివంతమైన యాంటిసెప్టిక్. ఇది అయోడిస్ యొక్క టింక్చర్ ఉపయోగించబడుతుంది. అయోడిస్ యొక్క టింక్చర్ అనేది ఇథైల్ ఆల్కహాల్లో కరిగిన అయోడిస్ యొక్క 2 నుండి 3 శాతం పరిష్కారం. అయోడోఫార్మ్ అనేది పసుపు రంగులో ఉండే ఘనపదార్థం, ఇది క్రిమినాశక మందు ఉపయోగించబడుతుంది. క్రిమిసంహారక నైపుణ్యం జెర్మ్స్ (స్కూక్ష్మ జీవులు) కానీ శస్త్రచికిత్సా పరికరాలు, అంతస్తులు, స్నానపు గదులు, మరుగుదొడ్లు మొదలైన నిర్జీవ పదార్ధాలపై ఉపయోగించబడతాయి. క్రిమిసంహారకాలు కఠినమైనవి మరియు జీవులపై ఉపయోగించడం సురక్షితం కాదు, ఎందుకంటే క్రిమిసంహారకాలు జీవ కణజాలాలను దెబ్బతీస్తాయి.

క్లోరిన్ ఒక శక్తివంతమైన ఆక్సీకరణ కారకం. ఇది నీటిని క్రిమిసంహారక చేయదానికి ఉపయోగిస్తారు. నీటిలో ఉండే సూక్ష్మజీవులను చంపదానికి 0.2 నుండి 0.4 ppm (పార్ట్స్ పర్ మిలియన్) గాధత సరిపోతుంది.జామ్లు, జెల్లీలు మరియు స్మాష్మెలలో సూక్ష్మజీవులను చంపదానికి తక్కువ సాంద్రత కలిగిన సల్ఫర్ దయాక్సెడ్ ఉపయోగించ బడుతుంది. కాబట్టి ఇది ఆహార సంరక్షణకారిగా పనిచేస్తుంది. బ్లీచింగ్ పౌడర్ (CaOCl₂), క్లోరిన్ (Cl₂) మెర్యురిక్ క్లోరైడ్ (HgCl₂), సోడియం హైపోక్లోరైట్ (NaClO), సల్ఫర్ దయాక్సైడ్ (SO₂) మొదలైన వాటిని క్రిమిరహితం చేయడానికి గదులు, ఆపరేషన్ థియేటర్లు మొదలైన వాటిలో ధూమపానం చేయడానికి సల్ఫర్ డయాక్సైడ్ ఉపయోగించబడుతుంది.

#### ఫినాల్ క్రిమినాశకమా లేదా క్రిమిసంహారకమా?

ఫినాల్ యొక్క 0.2 శాతం సజల ద్రావణాన్ని తయారు చేయడం ద్వారా యాంటిసెప్టిక్గా ఉపయోగించబడుతుంది. తక్కువ సాంద్రతలలో (0.2 శాతం కంటే తక్కువ) జీవన కణజాలాలపై ఉపయోగించడం సురక్షితం. ఫినాల్ యొక్క గాధత ఎక్కువగా ఉంటే, అది కణజాలాలను దెబ్బతీస్తుంది. అందువల్ల, అధిక సాంద్రతలో (1 శాతం లేదా అంతకంటే ఎక్కువ) ఫినాల్ క్రిమిసంహారకంగా ఉపయోగించబడుతుంది.



Chloro-xylenol



**O**-cresol



*m*-cresol



చాలా యాంటిసెప్టిక్స్ మరియు క్రిమిసంహారకాలు శక్తివంతమైన విషాలు (టేబుల్ 35.2) అవి వాటి జీవక్రియలో జోక్యం చేసుకోవడం వల్ల సూక్ష్మజీవులను చంపగలవు. మరికొందరు సూక్ష్మజీవుల శక్తివంతమైన ఆక్సీకరణ లేదా తగ్గించే స్వభావం కారణంగా వాటిని చంపగలుగుతారు (టేబుల్ 35.2)

Poisons	Oxidising agents	Reducsing agents	
Dyes			
Acriflavine (a yellow dye)	Bleaching powder Chlorine	Sulphur dioxdie	
Gentian Violet	Hydrogen peroxide		
Mercurochrome	Iodine		
Methylene blue			
	Tincture of Iodine		
Phenols	Iodoform		
	Pottasium permanganate		
Phenol	Sodium hypochlorite		
Cresols			
Resorcinol			
Chloroxylenol			
Others			
Formaldehyde Boric acid			
Mercuric chloride			
Silver nitrate			

35.2: Nature of some important Antiseptics and Disinfectants

#### 6. యాంటాసిద్దు

యాంటాసిద్లు కడుపులో ఉన్న అదనపు యాసిడ్ను తటస్థీకరించే మందులు. కడుపు రసంలో హైడ్రోక్లోరిక్ యాసిడ్ (HCl) ఉంటుంది. ఈ ఆమ్లం ఆహారం జీర్ణమయ్యే ప్రక్రియకు సహాయపడుతుంది. అనారోగ్యం లేదా ఆందోళన లేదా కొన్ని ఇతర కారణాల వల్ల కడుపులో ఎక్కువ ఆమ్లం ఉత్పత్తి అవుతుంది. కడుపు రసం అవసరమైన దానికంటే ఎక్కువ ఆమ్లంగా మారుతుంది. ఇది జీర్ణక్రియలో సమస్యలను కలిగిస్తుంది, కడుపు లైనింగ్లో రక్తస్రావం లేదా అల్సర్లకు కూడా కారణమవుతుంది. కొన్ని మందులు అదనపు ఆమ్లాన్ని తటస్థీకరించడానికి మరియు కడుపు ద్రవం యొక్క pHను సరిచేయడానికి ఉపయోగిస్తారు.

ఉదాహరణకు, సోడియం బైకార్బోనేట్ (NaHCO) లేదా మెగ్నీషియం హైద్రాక్ష్రెడ్ యొక్క సస్పెన్షన్ కదుపులో ఉన్న అధిక ఆమ్లాన్ని తటస్తం చేయడానికి ఉపయోగించబడుతుంది. మెగ్నీషియా పాలలో మెగ్నీషియం ఉంటుంది. హైద్రాక్ష్రెడ్ 'ENO ఫ్రూట్ సాల్ట్'లో సోడియం బైకార్బోనేట్ ఉంటుంది, ఇది కడుపు రసంలో అదనపు అమ్లతను తటస్తం చేయడానికి సహాయపడుతుంది. యాంటాసిడ్ ఉపయోగించే డైజీన్, జెలూసిల్ వంటి మందులలో మెగ్నీషియం హైద్రాక్ష్రెడ్ ఉంటుంది.

#### 7) మత్తమందులు

అనస్తీటిక్స్ అనేది పదార్థాలు, ఇవి ఒక చిన్న ప్రదేశంలో (స్థానికంగా) లేదా మొత్తం శరీరం యొక్క అనుభూతిని కోల్పోయేలా చేస్తాయి. లోకల్ మరియు జనరల్ అనే రెండు రకాల మత్తుమందులు ఉన్నాయి.

#### స్థానిక మత్తమందులు

స్థానిక మత్తమందులు తిమ్మిరి లేదా నొప్పి యొక్క అనుభూతిని కోల్పోవడాన్ని ఉత్పత్తి చేస్తాయి, చిన్న ప్రాంతంలో కొకైన్, ప్రోకైన్ మరియు జిలోకైన్ స్థానిక మత్తమందుగా ఉపయోగిస్తారు. ఇవి చిన్నపాటి ఆపరేషన్లకు ఉపయోగపడతాయి.



#### జనరల్ అనస్తీటిక్స్

సాధారణ మత్తుమందులు అపస్మారక స్థితికి కారణమవుతాయి మరియు అందువల్ల మొత్తం నొప్పి యొక్క అనుభూతిని కోల్పోతుంది. సాధారణ మత్తుమందులు ప్రధాన శస్త్రచికిత్స ఆపరేషన్లను నిర్వహించడానికి ఉపయోగిస్తారు. వాటిలో కొన్ని సాధారణ మత్తుమందులు నైట్రస్ ఆక్ష్రెడ్ (లాఫింగ్ గ్యాస్ అని కూడా పిలుస్తారు) వంటి వాయువులు. డైథైల్ ఈథర్, డివినైల్ ఈథర్ మొదలైన వాటిలో కొన్ని తక్కువ మరిగే ఈథర్లు. వీటిని పీల్చడం ద్వారా రోగికి అందిస్తారు. పీల్చినప్పుడు, ఇవి ఊపిరితిత్తుల ద్వారా (గహించబడతాయి మరియు వ్యక్తిని అపస్మారక స్థితికి చేరుస్తాయి. మత్తుమందులు శస్రచికిత్స ఆపరేషన్లను తక్కువ ప్రమాదకరం మరియు తక్కువ బాధాకరమైనవిగా చేశాయి. కొన్ని మత్తుమందులు నోటి ద్వారా (నోటి ద్వారా), లేదా ఇంజెక్షన్ల ద్వారా ఇవ్వబడతాయి. మార్పిన్ మరియు పథెడిన్ (ఇవి నల్లమందు నుండి పొందిన ఆల్కలాయిడ్స్) ఇంజెక్షన్లు లేదా నోటి ద్వారా ఇవ్వబడతాయి.

# 8. యాంటీమైకోబయాల్స్

కొన్ని సూక్ష్మజీవుల (బ్యాక్టీరియా, ఫంగస్ లేదా వైరస్లు) ద్వారా శరీరంలో ఇన్ఫెక్షన్ కారణంగా అనేక వ్యాధులు సంభవిస్తాయి. సూక్ష్మజీవుల వల్ల కలిగే వ్యాధులకు కొన్ని ఉదాహరణలు విరేచనాలు, న్యుమోనియా, టైఫాయిడ్, మూత్ర నాళాల ఇన్ఫెక్షన్ మొదలైనవి.యాంటీమైక్రోబయాల్స్ అనేవి రసాయనాలు, ఇవి రోగి యొక్క శరీరానికి ఎక్కువ నష్టం కలిగించకుండా సూక్ష్మజీవులను (శరీరానికి సోకిన) చంపడానికి ఉపయోగిస్తారు.

అందువల్ల యాంటీమైక్రోబయల్ అనేది ఒక రసాయనం, ఇది వివిధ సూక్ష్మజీవుల వల్ల కలిగే వ్యాధులను నయం చేయగలదు. ఒక ఆదర్శ యాంటీమైక్రోబయల్ వ్యాధిని చంపుతుంది – దీనివల్ల సూక్ష్మజీవులు మరియు రోగిపై ఎటువంటి హానికరమైన ప్రభావాన్ని కలిగి ఉండకూడదు. వాస్తవానికి అటువంటి యాంటీమైక్రోబయాల్ ఏదీ కాకపోవచ్చు, ఇది పూర్తిగా సురక్షితమైనది మరియు ఎటువంటి సైడ్ ఎఫెక్ట్ లేకుండా ఉంటుంది. అత్యంత సాధారణ యాంటీమైక్రోబయాల్స్ అందుబాటులో ఉన్నాయి sulpha మందులు మరియు యాంటీబయాటిక్స్.

#### 9. సల్పా డ్రగ్స్

సల్ఫా డ్రగ్స్ అనేది సల్ఫానిలమైడ్ నుండి తీసుకోబడిన ఔషధాల సమూహం. అన్ని సల్ఫా మందులు ప్రయోగశాలలలో సంశ్లేషణ చేయబడతాయి. వాటిలో కొన్ని వివిధ రకాల బ్యాక్టీరియా వల్ల కలిగే వ్యాధుల చికిత్సలో చాలా ఉపయోగకరంగా ఉన్నాయి. కొన్ని ముఖ్యమైన సల్ఫా ఔషధాలు సల్ఫాసెటమైడ్, సల్ఫాడియాజిన్ మరియు సల్ఫాగ్వానిడిన్ మొదలైనవి.





న్యుమోనియా, గొంతునొప్పి మొదలైన వాటికి చికిత్స చేయదానికి సల్పా మందులు ఉపయోగించబద్దాయి. ఇవి యాంటీబయాటిక్స్ కంటే తక్కువ శక్తివంతమైనవి. అందువల్ల, ఇప్పుడు ఇవి తక్కువ ప్రజాదరణ పొందాయి.

#### 10. యాంటీబయాటిక్స్

యాంటీబయాటిక్స్ అనేది కొన్ని సూక్ష్మజీవులు (అచ్చు లేదా శిలీంధ్రాలు) ఉత్పత్తి చేసే జీవక్రియ ఉత్పత్తులు. అవి వృద్ధిని నిరోధిస్తాయి మరియు వాటి జీవిత ప్రక్రియలను నిరోధించడం ద్వారా సూక్ష్మజీవులను (బాక్టీరియా, శిలీంధ్రాలు మొదలైనవి) కలిగించే వ్యాధిని కూడా చంపుతాయి. అందువల్ల వాటిని యాంటీబయాటిక్స్ (వ్యతిరేక అంటే వృతిరేకంగా మరియు బయోటిక్ అంటే జీవితం) అని సూచిస్తారు.

పెన్సిలిన్ కనుగొనబడిన మొట్టమొదటి యాంటీబయాటిక్. అలెగ్జాండర్ ఫ్లెమింగ్ 1929లో పెన్సిలియం నోటాటమ్ అచ్చు నుండి పెన్సిలిన్ను వేరు చేశాడు. అనేక బాక్టీరియా వల్ల కలిగే వ్యాధుల చికిత్సకు పెన్సిలిన్ ఉపయోగించబడింది. ఇది న్యుమోనియా, ట్రోన్రైటిస్, గొంతు నొప్పి, గడ్డలు మొదలైన వాటి చికిత్స నుండి ప్రభావవంతంగా ఉపయోగించబడింది.



Penicillin G (benzyl penicillin

తర్వాత పెన్సిలిన్ నాణ్యతను మెరుగుపరిచేందుకు ప్రయత్నాలు జరిగాయి. ఇది వివిధ రకాల పెన్సిలిన్లను కనుగొనటానికి దారితీసింది. ఉదాహరణకు, పెన్సిలిన్ జి (బెంజిల్పెన్సిలిన్ అని కూడా పిలుస్తారు), పెన్సిలిన్ ఎఫ్, పెన్సిలిన్ కె అనేవి పెన్సిలిన్ యొక్క అత్యంత సాధారణ రకాలు.

ఆంపిసిలిస్ మరియు అమోక్సిసిలిస్ పెన్సిలిస్ యొక్క సెమీ సింథటిక్ మార్పులు. ఈ సందర్భంలో అచ్చు యొక్కజీవక్రియ ఉత్పత్తి పొందబడుతుంది మరియు యాంపిసిలిస్ లేదా అమోక్సిసిలిస్ పొందడానికి యాంటీబయాటిక్ అణువులో కావలసిన మార్పులను తీసుకురావడానికి కొన్ని (పతిచర్యలు నిర్వహించబడతాయి.

మెరుగైన మరియు మెరుగైన యాంటీబయాటిక్లను కనుగొనే ప్రయత్నాలు జరుగుతున్నాయి. మెరుగైన యాంటీబయాటిక్లను కనుగొనడం కోసం ఈ అన్వేషణ అంతం లేని ప్రక్రియ. ఇప్పుడు పెద్ద సంఖ్యలో యాంటీబయాటిక్స్ అందుబాటులో ఉన్నాయి. కొన్ని ఉదాహరణలు (స్టెప్టోమైసిన్ మరియు క్లోరోమైసెటిన్ (క్లోరోయాంఫెనికోల్) మరియు బెట్రాసైక్లిన్.



#### Chloroamphenicol

(స్టెప్టిమైసిన్ క్షయవ్యాధి (TB) చికిత్సకు ఉపయోగిస్తారు. క్లోరోమై సెటిన్ను టైఫాయిడ్ చికిత్సలో ఉపయోగిస్తారు. బెట్రా సైక్లిన్ అనేక వ్యాధుల చికిత్సకు ఉపయోగిస్తారు. విస్త్రత – స్పెక్టమ్ యాంటీబయాటిక్స్ అనేవి యాంటీబయాటిక్స్, ఇవి అనేక రకాల వ్యాధిని కలిగించే సూక్ష్మజీవులను చంపుతాయి. విస్త్రత – స్పెక్టమ్ యాంటీబయాటిక్స్ అనేక వ్యాధుల చికిత్సకు ఉపయోగించవచ్చు. ఉదాహరణకు, (స్టెప్టోమైసిన్, బెట్రా సైక్లిన్ మరియు క్లోరోఅంఫెనికోల్ విస్త్రత – స్పెక్టమ్ యాంటీబయాటిక్స్. నారో స్పెక్టమ్ యాంటీబయాటిక్స్ కొన్ని వ్యాధుల చికిత్సలో (పభావవంతంగా ఉంటాయి.

# 11. యాంటీబయాటిక్స్ యొక్క అలెర్జీ ప్రతిచర్యలు

కొందరు వ్యక్తులు కొన్ని యాంటీబయాటిక్స్కు అలెర్జీ ప్రతిచర్యలను చూపించవచ్చు. ఈ ప్రతిచర్యలు చర్మంపై దద్దర్లు కనిపించడం వంటి తేలికపాటివి కావచ్చు లేదా చాలా తీవ్రంగా ఉండవచ్చు మరియు ప్రాణాంతకం కూడా కావచ్చు. ఒక వైద్యుడు ఇంజెక్షన్ ద్వారా చిన్న మోతాదులో యాంటీబయాటిక్ ఇచ్చి, ఆపై ఏదైనా అవాంఛిత ప్రతిచర్య ఉంటే చూడటానికి కొంత సమయం వేచి ఉండడాన్ని మీరు గమనించి ఉండవచ్చు. ప్రతికూల (చెడు) ప్రతిచర్య లేనట్లయితే, అప్పుడు వైద్యుడు మాత్రమే యాంటీబయాటిక్ యొక్క పూర్తి మోతాదును ఇస్తాడు.

#### 12. ట్రాంక్విలైజర్స్ మరియు హిప్నోటిక్స్

ట్రాంక్విలైజర్లు మరియు హిప్నోటిక్స్ ఆందోళనను తగ్గించడానికి ఉపయోగిస్తారు, మరియు అవి కూడా ఒక వ్యక్తిని ప్రశాంతంగా చేస్తాయి. స్లీపింగ్ పిల్స్ ఈ సమ్మేళనాలతో తయారు చేయబడ్డాయి. వాటిలో చాలా వరకు అలవాట్లు ఏర్పడతాయి. వారి విచక్షణారహితంగా మరియు అతిగా వాడకాన్ని నివారించాలి. లేకపోతే అది వ్యసనం మరియు అనేక ఇతర సమస్యలకు దారితీయవచ్చు.



151

లుమినల్, సెకోనల్ మరియు ఈక్వానిల్ అనేవి సాధారణంగా ఉపయోగించే ట్రాన్స్ క్విలైజర్లు. బార్బిటురిక్ యాసిడ్ మరియు బార్బిటురిక్ యాసిడ్కు సంబంధించిన కొన్ని ఇతర సమ్మేళనాలను నిద్ర మాత్రల తయారీలో ఉపయోగిస్తారు.



# 13. ఫెర్టిలిటీ కంటోల్ మెడిసిన్స్

మానవ జనాభాను నియంత్రించడం ప్రతి ఒక్కరి అందోళన. గర్భధారణను నిరోధించడంలో సహాయపడే మందులు అందుబాటులో ఉన్నాయి. గర్భాన్ని నిరోధించడంలో సహాయపడే మందులను గర్భనిరోధకాలు అంటారు. ఇవి సాధారణంగా మాత్రల రూపంలో ఉంటాయి మరియు ఆడవారు క్రమం తప్పకుండా తీసుకోవాలి. నోరెథింద్రోన్ మరియు మెస్టానాల్ వంటి రసాయనాలను గర్భనిరోధకాలుగా (జనన నియంత్రణ మాత్రలు) ఉపయోగిస్తారు. రసాయనికంగా ఇవి ఆడ సెక్స్ హార్మోన్లను పోలి ఉంటాయి.



గర్భనిరోధక మాత్రలు కొన్ని సందర్భాల్లో కొన్ని దుష్టుభావాలను కలిగి ఉండవచ్చు. కాబట్టి కొంతమంది నిపుణుల మార్గదర్శకత్వంలో గర్భనిరోధకం వాడాలి.

#### 35.3 ఆహార సంరక్షణ పదార్థాలు:

అహారంలో భద్రపరచడానికి కలిపిన రసాయనాలను ఫుడ్ ట్రిజర్వేటిప్లు అంటారు. అవి స్వీటెనర్లు, యాంటీ ఆక్సిడెంట్లు, ఎమల్సిఫైలు, రంగులు మొదలైనవి కావచ్చు. వాటికి పోషక విలువలు ఉండవు. ఈ రోజుల్లో యాంటీ ఆక్సిడెంట్లు ఎక్కువగా వాడుతున్నారు. అవి ఆహారంపై ఆక్సిజన్ చర్యను ఆలస్యం చేస్తాయి మరియు దానిని సంరక్షిస్తాయి. సాధారణంగా ఉపయోగించే రెండు ముఖ్యమైన యాంటీఆక్సిడెంట్లు (BHT) బ్యూటిలేటెడ్ హైద్రాక్సిల్ టాలరెన్స్ మరియు (BHA) బ్యూటిలేటెడ్ హైద్రాక్సిలానిసోల్.



కొన్నిసార్లు వాటిని సిట్రిక్ యాసిడ్ లేదా ఆస్కార్బిక్ యాసిడ్తో కలెపి మరింత సినర్జెటిక్ ప్రభావాన్ని కలిగి ఉ ంటాయి. SO₂ మరియు SO₃₂- చక్కెర, సిరప్, వైన్, బీర్ మొదలైన వాటికి సంరక్షణకారులను ఉపయోగిస్తారు. అతి ముఖ్యమైన ఆహార సంరక్షణకారి సోడియం బెంజోయేట్. ఇది హిప్యూరిక్ యాసిడ్గా మార్చడం ద్వారా జీవక్రియ చేయబడుతుంది మరియు చివరకు మూత్రంలో ప్రయోగించబడుతుంది. సాధారణంగా రంగులు ఆహారాన్ని రంగు వేయడానికి ఉపయోగిస్తారు. కెరోటిన్ సురక్షితమైన ఆహార రంగు. కొన్ని ముఖ్యంగా పిల్లలకు మరియు రోగులకు హానికరం. కొన్ని రంగులు ఖనిజాలు, విటమిన్లు, అమైనో ఆమ్లాలు మొదలైన పోషక పదార్థాలుగా పనిచేస్తాయి. ఇవి తప్ప మిగతావన్నీ పోషక విలువలు కలిగి ఉండవు.

#### 35.4 కృతిమ స్వీటెనింగ్ ఏజెంట్ల:

సుక్రోజ్**కు బదులుగా క్యాలరీలను తీసుకునే స్వీ**టెనర్లను కృతిమ స్వీటెనర్లు అంటారు.



సచారియో చెరకు చక్కెర కంటే 550 రెట్లు తియ్యగా ఉంటుంది మరియు మూత్రంలో విసర్జించబడుతుంది.
 ఇది దయాబెటిక్ రోగులకు కూడా ఉపయోగించబడుతుంది.

2) అస్పార్టేస్ చక్కెర కంటే 100 రెట్లు తియ్యగా ఉంటుంది. వంట ఉష్ణోగ్రత వద్ద అస్థిరంగా ఉన్నందున ఇది ఎక్కువగా చల్లని ఆహారాలు మరియు శీతల పానీయాల కోసం ఉపయోగించబడుతుంది.

3) అలిటమే సుక్రోజ్**కి 200 రెట్లు తియ్యగా ఉంటుంది మరియు అస్పార్టేన్ కంటే** స్థిరంగా ఉంటుంది. ఇది వంట ఉష్ణోగ్రత వద్ద స్థిరంగా ఉంటుంది.

HO - C - CH, - CH - C - NH - CH - C - NH - CH

#### 35.5 స్వీయ మందుల ప్రమాదాలు

అఫ్పుడు అర్హత కలిగిన వైద్యుని సలహా లేకుండా రోగి మందులు తీసుకుంటే, దానిని స్వీయ–మధ్యవర్తిత్వం అంటారు. స్వీయ మందులు చాలా హానికరమైన మరియు ప్రమాదకరమైన అభ్యాసం. స్వీయ– మందులను ఎఫ్ఫుడూ ప్రయత్నించకూడదు. కొన్ని హానికరమైన ప్రభావాలు:

- ఒకరికి బాగా పనిచేసిన ఔషధం మీకు మంచిది కాకపోవచ్చు మరియు కొంత తీవ్రమైన హానిని కూడా కలిగిస్తుంది.
- 2. మీరు అవసరమైన దానికంటే ఎక్కువ పరిమాణంలో ఔషధాన్ని తీసుకోవచ్చు. ఇది మీకు హానికరం కావచ్చు.
- 3. మీరు అవసరమైన దానికంటే తక్కువ పరిమాణాన్ని తీసుకోవచ్చు. వ్యాధిని కలిగించే సూక్ష్మజీవులు ఔషధానికి ప్రతిఘటనను పొందవచ్చు మరియు ఔషధం అసమర్థంగా మారవచ్చు.

మీరు స్వీయ మందులకు దూరంగా ఉండాలి. డాక్టర్ సలహా లేకుండా ఎక్కువ కాలం పాటు సాధారణ మందుల వాడకాన్ని నివారించండి. వైద్యుని ప్రిస్క్రిష్షన్ లేకుండా తక్షణమే అందుబాటులో ఉండే అత్యంత సాధారణ మందులను కూడా తప్పుగా ఉపయోగించడం వల్ల హానికరమైన ప్రభావం ఉంటుంది.

మీరు డాక్టర్ ప్రిస్కిష్షన్ లేకుండా కొనుగోలు చేయగల మందులను ఓవర్–ది–కౌంటర్ మందులు అంటారు. ఉదాహరణకు దగ్గు సిరఫ్లు, క్రోసిన్, ఆస్పిరిన్ మొదలైనవి ఓవర్ ది కౌంటర్ ఔషధాలు. అర్హత కలిగిన డాక్టర్ ప్రిస్కిష్షన్ చూపించిన తర్వాత మీరు కొనుగోలు చేయగల మందులను షెడ్యూల్డ్ ద్రగ్స్ అంటారు. షెడ్యూల్డ్ ఔషధాల అక్రమ వినియోగం మరింత తీవ్రమైన సమస్యలను కలిగిస్తుంది. అందువల్ల, వారి అమ్మకం ప్రభుత్వంచే నియంత్రించబడుతుంది మరియు నియంత్రించబడుతుంది.

చాలా మంచి రసాయన శాస్త్రవేత్తలు సరైన ట్రిస్క్రిష్షన్ లేకుండా షెడ్యూల్ చేసిన మందులను విక్రయించరు. కొందరు బాధ్యత లేని రసాయన శాస్త్రవేత్తలు ట్రిస్క్రిష్షన్ లేకుండా ఇటువంటి మందులను అమ్మవచ్చు. మీరు ట్రోత్సహించకూడదు ఇది మంచి పద్దతి కాదు. 35.6 ఔషధాల ప్రత్యామ్నాయ వ్యవస్థలు

అల్లోపతి వైద్య విధానంలో ఎక్కువగా రసాయనాలను మందులుగా ఉపయోగిస్తున్నారు. అల్లోపతి ఔషధం మార్కెట్లో అందుబాటులోకి రావడానికి ముందు జంతువులు మరియు మానవులపై అనేక సంవత్సరాల పరీక్షలు మరియు ట్రయల్స్ పడుతుంది. దీని ప్రభావాలు, దుష్పభావాలు, సమర్థత, సిఫార్సు చేయబడిన మోతాదును నిర్ణయించడం మొదలైనవి మార్కెట్లో విక్రయించే ముందు శాస్త్రీయ మార్గాలపై విస్తృతంగా అధ్యయనం చేయబడతాయి. ప్రపంచవ్యాప్తంగా ఉన్న ప్రభుత్వాలు ప్రజల భద్రత కోసం ఉత్పత్తి, నాణ్యత నియంత్రణ, అమ్మకం మొదలైన వాటికి సంబంధించి అనేక చట్టాలు, నియమాలు మరియు నిబంధనలను రూపొందిస్తాయి. అల్లోపతి పద్ధతిని పాశ్చాత్య వ్యవస్థ లేదా ఆంగ్ల వైద్య విధానం అని పిలుస్తారు.

అల్లోపతి వైద్య విధానంతో పాటు ప్రపంచంలోని వివిధ ప్రాంతాల్లో ఉపయోగించే అనేక ఇతర వైద్య విధానాలు ఉ న్నాయి. వాటిలో కొన్ని ఆయుర్వేదం, యునాని, హూమియోపతిక్, చైనీస్, టిబెటన్, సంప్రదాయ, గిరిజన, సాంప్రదాయ మొదలైనవి. వీటిలో కొన్ని వ్యవస్థలు ప్రపంచంలోని నిర్దిష్ట ప్రాంతంలో బాగా ప్రాచుర్యం పొందాయి. కొన్ని చిన్న ప్రాంతంలో స్థానికీకరించబడ్డాయి లేదా ఒక చిన్న సమూహం ద్వారా ఉపయోగించబడతాయి. కొన్ని సందర్భాల్లో చికిత్స వ్యవస్థ గురించి ప్రాతపూర్వక రికార్డు ఉండకపోవచ్చు మరియు జ్ఞానం తరం నుండి తరానికి నోటి మాట ద్వారా అందించబడుతుంది.

ఈ వ్యవస్థల్లో చాలా వరకు పెద్ద జనాభాలో ప్రజాదరణ పొందలేదు. ఇది వ్యవస్థపై సరైన అవగాహన లేకపోవటం వల్ల కావచ్చు లేదా ప్రత్యామ్నాయ వైద్య విధానాలపై తగినంత అధ్యయనం లేకపోవడం వల్ల కావచ్చు. మానవజాతి ప్రయోజనం కోసం జ్ఞానాన్ని ఉత్తమంగా ఉపయోగించుకోవడానికి అన్ని రకాల వ్యవస్థలను విస్తృతంగా అధ్యయనం చేయడం తక్షణ అవసరం.

#### ఇంటెక్న్ ప్రశ్నలు 35.3

1.	టాన్స్ క్విలైజర్స్ మరియు హిప్నోటిక్స్ యొక్క ఉపయోగం ఏమిటి?
2.	టాన్సుక్విలైజర్కి ఒక ఉదాహరణ ఇవ్వండి.
••••	
3.	గర్భనిరోధకాలు అంటే ఏమిటి?
4.	ఓవర్ ది కౌంటర్ మందులు ఏమిటి?
••••	

155

What we have learnt?

- ఔషధాలు అంటే వ్యాధి నివారణ, నివారణ, చికిత్స, వ్యాధులు మరియు రుగ్మతల నిర్వహణ లేదా రోగుల కోలుకోవడానికి ఉపయోగించే రసాయనాలు లేదా రసాయనాల మిశ్రమం.
- మందులు మొక్కలు లేదా మొక్కల భాగాల నుండి పొందబడతాయి లేదా ప్రయోగశాలలలో సంశ్లేషణ చేయబడతాయి.
- ఔషధాలలో ఒక రసాయన సమ్మేళనం మాత్రమే ఉండవచ్చు లేదా అది అనేక సమ్మేళనాల మిశ్రమం కావచ్చు.
- గ్రద్స్ ముడి మిశ్రమాలు కావచ్చు మరియు అన్ని రసాయన భాగాల గుర్తింపు మరియు వాటిలో ఉన్న వాటి మొత్తం ఖచ్చితంగా తెరియకపోవచ్చు.
- ఆస్పిరిన్ మరియు పారాసెటమాల్ వంటి శరీర ఉష్ణోగ్రతను తగ్గించడానికి యాంటిపైరెటిక్స్ ఉపయోగిస్తారు.
- అనాల్జెసిక్స్ శరీర నొప్పిని తగ్గిస్తాయి ఉదాహరణకు ఆస్పిరిన్ మరియు మార్ఫిన్.
- యాంటిసెప్టిక్స్ సూక్ష్మజీవులను చంపుతాయి మరియు జీవ కణజాలంపై సురక్షితంగా ఉపయోగించబడతాయి,
   అయితే యానిమేట్ వస్తువులలో క్రిమిసంహారకాలు ఉపయోగించబడతాయి.
- ఫీనాల్ యొక్క సజల ద్రావణం (0.2 శాతం కంటే తక్కువ) యాంటి సెప్టిక్ ఉపయోగించబడుతుంది. అధిక సాంద్రతలలో ఫినాల్ క్రిమిసంహారక మందుగా ఉపయోగించబడుతుంది.
- యాంటీబయాటిక్స్ అనేది కొన్ని సూక్ష్మజీవులచే ఉత్పత్తి చేయబడిన జీవక్రియ ఉత్పత్తులు, ఇవి కొన్ని సూక్ష్మజీవులను చంపగలవు. ఉదాహరణకు పెన్సిలిన్, స్టెప్టోమైసిన్, టెట్రాసైక్లిన్ మొదలైనవి.
- బ్రాడ్ స్పెక్టమ్ యాంటీబయాటిక్స్ అనేక రకాల సూక్ష్మజీవులను చంపగలవు, అందువల్ల అనేక వ్యాధులను నయం చేయవచ్చు.
- స్థానిక మత్తుమందులు తిమ్మిరి, చిన్న ప్రాంతంలో నొప్పి అనుభూతిని కోల్పోతాయి. సాధారణ మత్తుమందు మొత్తం శరీరం యొక్క అనుభూతిని కోల్పోతుంది.
- అర్హత కలిగిన వైద్యుని సరైన సలహా లేకుండా రోగులు మందులు వాడటమే స్వీయ– మందు. ఇది రోగికి చాలా హానికరం.
- అల్లోపతి వైద్య విధానంతో పాటు అనేక ఇతర ప్రత్యామ్నాయ వైద్య విధానాలు వాడుకలో ఉన్నాయి. ఆయుర్వేదం, యునాని, హూమియోపతిక్, చైనీస్, టిబెటన్, సంప్రదాయ, గిరిజన, సంప్రదాయ కొన్ని ఉదాహరణలు.

Terminal Exercise:

- 1. మందులు ఎలా వర్గీకరించబడ్డాయి?
- 2. మొదటి యాంటీబయాటిక్ను ఎవరు వేరు చేశారు?
- 3. అనాల్జెసిక్ మరియు యాంటిపైరేటిక్గా ఉపయోగించే ఔషధానికి పేరు పెట్టండి.
- 4. నార్కోటికానాల్జెసిక్ అంటే ఏమిటి?

- 5. ఫినాల్ యొక్క 2.0 శాతం సజల ద్రావణాన్ని క్రిమిసంహారిణిగా ఎందుకు ఉపయోగిస్తారు?
- 6. యాంటీబయాటిక్స్ యొక్క అలెర్జీ ప్రతిచర్యల ద్వారా మీరు ఏమి అర్థం చేసుకున్నారు?
- 7. షెద్యూల్డ్ డ్రగ్స్ అంటే ఏమిటి?
- 8. దాక్టర్ నుండి ప్రిస్కిష్షన్ లేకుండా మీరు ఏ మందులను కొనుగోలు చేయవచ్చు?

# 36.B భవన సామాగ్రి (Building Materials)

చరిత్రపూర్వ మానవుడు మృగాల నుండి మరియు ప్రకృతి కోపం నుండి తనను తాను రక్షించుకోవడానికి గుహలలో ఆశ్రయం పొందాడు. అప్పటి నుండి, వివిధ సహజ వనరులు దోపిడీ చేయబడ్డాయి, స్థానిక మరియు సవరించిన రూపాల్లో, సింథటిక్ పదార్థాలతో పాటు జీవనాన్ని మరింత సౌకర్యవంతంగా చేయడానికి. నేడు, సిమెంట్, ఉక్కు, గాజు, సిరామిక్స్, రాయి, కలప, పెయింట్లు మరియు వార్నిష్ లు మొదలైన పెద్ద సంఖ్యలో పదార్థాలు బలమైన, మన్నికైన మరియు సురక్షితమైన భవనాలు మరియు ఇతర నిర్మాణాల తయారీకి ఉపయోగించబడుతున్నాయి. ఈ మెటీరియల్స్, వాటి చర్య విధానం మరియు కొత్త అప్లికేషన్ల అభివృద్ధిలో కెమిస్టీకి ముఖ్యమైన పాత్ర ఉంది. ఈ పాఠంలో మీరు వాటి కూర్పు, తయారీ మరియు అనువర్తనాల పరంగా కొన్ని భవన (లేదా నిర్మాణ) పదార్థాల గురించి నేర్చుకుంటారు.

#### లక్ష్యాలు

ఈ పాఠాన్ని చదివిన తర్వాత మీరు వీటిని చేయగలరు:

- సిమెంట్ నిర్వచించడం
- పోర్ట్ ల్యాండ్ సిమెంట్ తయారీకి ఉపయోగించే ముడి పదార్థాలను జాబితా వివరించడం
- సిమెంట్ యొక్క అమరిక ప్రక్రియ గురించి వివరించడం
- వివిధ రకాల ప్రత్యేక సిమెంట్లు మరియు వాటి అప్లికేషన్లను వివరించడం
- మోర్బార్, కాంక్రీట్ మరియు R.C.C వివరించడం
- గాజును నిర్వచించడం
- గాజు తయారీకి ఉపయోగించే ముడి పదార్థాలను జాబితా చేయండి మరియు వాటి ప్రాముఖ్యతను వివరించడం
- గాజు తయారీ ప్రక్రియను వివరించడం
- గాజు యొక్క సాధారణ లక్షణాలను నిర్వచించడం
- వివిధ రకాల గాజులు మరియు వాటి ఉపయోగాలను వివరించడం
- 'సెరామిక్స్' అనే పదాన్ని నిర్వచించడం;
- వివిధ రకాల మట్టి ఉత్పత్తులను జాబితా వివరించడం
- వివిధ రకాల బంకమట్టి ఉత్పత్తులను వివరించండి మరియు వాటి మధ్య తేదాను వివరించడం.

#### 36.1 సిమెంట్

సిమెంట్ అనే పదానికి అర్ధం 'ఏకం చేయడం'. సిమెంట్ ఒక అకర్బన పదార్థంగా గుర్తించబడుతుంది, ఇది నీటితో కలిపినప్పుడు క్రమంగా గట్టి ద్రవ్యరాశిని ఇస్తుంది. సిమెంట్ పురాతన కాలం నుండి వాడుకలో ఉంది. ఈజిప్షియన్ పిరమిడ్లు మరియు అనేక పురాతన (గ్రీకు నిర్మాణాలు కొన్ని రకాల సిమెంటింగ్ పదార్థాలను ఉపయోగించి నిర్మించబడ్డాయి. సహజ సిమెంట్, పజోలానా సిమెంట్, స్లాగ్ సిమెంట్ మరియు పోర్ట్ ల్యాండ్ సిమెంట్ మొదలైన వివిధ రకాల సిమెంట్లు ఉన్నాయి. ఇవి వాటి కూర్పు, తయారీ విధానం మరియు అప్లికేషన్లలో విభిన్నంగా ఉంటాయి. (పస్తుతం నిర్మాణ పనుల్లో ఎక్కువగా ఉపయోగించే పోర్ట్ల్యాండ్ సిమెంట్ గురించి మనం చర్చిస్తాం. భారతదేశంలో పోర్ట్ల్యాండ్ సిమెంట్ తయారీ సౌత్ ఇండియా ఇండస్ట్రీస్ లిమిటెడ్ ద్వారా సుమారు వంద సంవత్సరాల క్రితం (1904) (ప్రారంభమైంది. నేడు, భారతీయ సిమెంట్ పరిశ్రమ సంవత్సరానికి 100 మిరియన్ టన్నుల సిమెంట్ను తయారు చేస్తోంది.

# 36.1.1 పోర్ట్ ల్యాండ్ సిమెంట్ తయారీ

పోర్ట్ ల్యాండ్ సిమెంట్ 1824లో ఆర్జిలేషియస్ లైమ్ స్టోన్ (20–40% మట్టిని కలిగి ఉన్న సున్నపురాయి) కాలినేట్ చేయడం (లేదా మండించడం) ద్వారా కనుగొనబడింది. కాంక్రీటు (సిమెంట్ మరియు కంకర లేదా ఇసుక మిశ్రమం) దాని నుండి పొందిన ఇంగ్లాడ్లోని ఐల్ ఆఫ్ పోర్ట్ర్యాండ్ నుండి భవనం రాయిని పోలి ఉంటుంది. నేడు వివిధ రకాలైన పోర్ట్ ల్యాండ్ సిమెంట్ వివిధ కంపోజిషన్లతో వివిధ అప్లికేషన్లకు అందుబాటులో ఉన్నాయి.

# ఎ) ముడి పదార్థాలు:

పోర్ట్ ల్యాండ్ సిమెంట్ తయారీకి అనేక ముడి పదార్దాలు అవసరం. వీటిని స్థూలంగా రెండు వర్గాలుగా విభజించవచ్చు:

- i) సున్నపు (కాల్షియం సమృద్ధిగా ఉండే) పదార్థం: సున్నపురాయి (CaCO3), సుల్రెట్మ్ వంటివి. సిమెంట్ యొక్క ప్రధాన భాగం మరియు తగిన మొత్తంలో ఉపయోగించాల్సిన అవసరం ఉంది. సున్నం యొక్క అదనపు లేదా దాని లోపం, రెండూ సిమెంట్ యొక్క బలాన్ని తగ్గిస్తాయి.
- ii) అర్జిలేసియస్ మెటీరియల్: వీటిలో సిలికా మరియు అల్యూమినా సమృద్ధిగా ఉంటాయి, ఉదాహరణకు, క్లే (Al₂ O₃ మరియు SiO₂ మిశ్రమం), షేల్, స్లేట్ లేదా అగ్నిపర్వత పదార్థం మొదలైనవి. ఇవి సిమెంట్కు బలాన్ని అందిస్తాయి మరియు సిమెంట్ యొక్క సెట్టింగ్ లక్షణాలను ప్రభావితం చేస్తాయి.

పైన పేర్కొన్న వాటికి అదనంగా, పొడి బొగ్గ లేదా ఇంధన నూనె మరియు జిప్సం (CaSO₄.2H₂O) కూడా సిమెంట్ తయారీలో ఉపయోగిస్తారు. జిప్సం జోడించడం సిమెంట్ యొక్క సెట్టింగ్ సమయాన్ని నియంత్రిస్తుంది. జిప్సం మొత్తాన్ని జాగ్రత్తగా నియంత్రించాలి ఎందుకంటే అది అవసరమైన దానికంటే ఎక్కువ మొత్తంలో ఉంటే అది పగుళ్లకు కారణమవుతుంది. బి) తయారీ ప్రక్రియ:

సిమెంట్ను సిద్ధం చేయదానికి ముడిపదార్థాలను తగిన మొత్తంలో కలిపి, పౌడర్గా చూర్ణం చేసి, ఆపై కాల్సినేట్ (కాల్చిన లేదా కాల్చిన) ముడిపదార్థాలను కలపడం మరియు (గైండింగ్ చేయడం తడి లేదా (గైండింగ్ చేయడంపై ఆధారపడి రెండు రకాల తయారీ (పక్రియలు తడి (పక్రియ మరియు పొడి (పక్రియ ఉన్నాయి. పొడి పరిస్థితుల్లో

i) తడి ప్రక్రియ: ఈ పద్ధతిలో ముడిపదార్థాలను నీటితో శుద్ధి చేస్తారు (దాదాపు 35-40% ద్రవ్యరాశిలో) అపై బాల్ మిల్లుల్లో పొడి చేస్తారు. ఈ ముడిపదార్థాలను వ్యక్తిగతంగా లేదా లోపల చికిత్స చేయవచ్చు. మిశ్రమం యొక్క రూపం. అలా పొందిన పదార్థం వంటి పేస్ట్ జల్లెడ పట్టి, అవసరమైతే మరింత పొడిగా చేయాలి. ఇది గణన కోసం ఒక రోటరీ బట్టీ (Fig. 36.1) గుండా పంపబడుతుంది.



Fig.36.1: Rotary kiln used in the manufacture of cement.

కొలెమి కొద్దిగా వంపుతిరిగిన పొదవైన పైపును కలిగి ఉంటుంది, అది దాని స్వంత అక్షాల చుట్టూ నెమ్మదిగా తిరుగుతుంది. పైపు పైభాగంలో అమర్చిన తొట్టి ద్వారా మిశ్రమం పేస్ట్ పొదవైన పైపులోకి మృదువుగా ఉంటుంది. ఒక సిట్ (క్రిందికి కదులుతుంది, అది వార్డల పైకి వెళ్లే వేడి వాయువులను కలుస్తుంది. బట్టీ యొక్క అధిక ఉష్ణోగతలో, ముడి పదార్ధాలు అనేక కొత్త సమ్మేళనాలను ఏర్పరచడానికి అనేక రసాయన (పతిచర్యలకు లోనవుతాయి. ఈ మిశ్రమం కొలెమి నుండి చిన్న ఆకుపచ్చని నలుపు లేదా బూడిద రంగులో ఉండే గట్టి బంతుల రూపంలో క్లింకర్స్ అని పిలువబడుతుంది, ఇది కూలర్ అని పిలువబడే రెండవ పైపులోకి వస్తుంది. ఈ క్లింకర్లను చల్లబరచడానికి మరియు పొడి చేయడానికి అనుమతిస్తారు. ఈ పౌడర్కి కొద్ది మొత్తంలో (2−3) జిప్సం వేసి, సిమెంటు పొందేందుకు మళ్లీ పొడి చేస్తారు. ii) పొడి పద్ధతి: ఈ పద్ధతిలో ముడిపదార్థాలను బాల్ మిల్లుల్లో కలిపి పొడి చేస్తారు. ఇది నీటి స్పేలతో గోడలు అమర్చబడి తిరిగే పన్నీర్లుగా మార్చబడుతుంది. ప్యానియర్లలలో సెంట్రిఫ్యూగల్ ఫోర్స్ పదార్థాన్ని గోడతో సంబంధంలో ఉంచుతుంది, అక్కడ అది కొంతవరకు తడిగా ఉంటుంది మరియు చిన్న గోళాల ఆకారాన్ని తీసుకుంటుంది. ఇవి పైన వివరించిన విధంగా రోటరీ బట్టీ ద్వారా పంపబడతాయి.

#### సి) సిమెంట్ కూర్పు

పోర్టల్యాండ్ సిమెంట్ కాల్షియం అల్యూమినియం సిలికేట్లను కలిగి ఉంటుంది. ఇది ఒకటి కంటే ఎక్కువ సమ్మేళనాలను కలిగి ఉంటుంది. పోర్ట్ ల్యాండ్ సిమెంట్లో ఉన్న వివిధ మూలకాల యొక్క సుమారు శాతం వాటి ఆక్షైడ్లుగా వ్యక్తీకరించబడింది (టేబుల్ 36.1).

Oxide	Approximate	Average
	percentage	percentage
CaO	60-67	64
SiO ²	17-25	22.5
Al2O ³	3-8	6.5
Fe2O ³	0.5-6.0	2.0
MgO	0.1-4.0	2.0
SO ³	1.0-3.0	1.5
K2O, Na2O	0.4-1.3	-

టేబుల్ 36.1: పోర్ట్ ల్యాండ్ సిమెంట్ యొక్క సుమారు శాతం కూర్పు

పైన జాబితా చేయబడిన మొదటి నాలుగు ఆక్ష్రెడ్లు ప్రాథమిక సమ్మేళనాలను అందిస్తాయి, అయితే ద్వితీయ సమ్మేళనాలుగా సూచించబడతాయి. హైద్రాక్ష్రెడ్లు మరియు కార్బోనేట్లను అందించదానికి వాతావరణం నుండి తేమ మరియు COలను CaO మరియు MgO గ్రహించడం వలన పైన జాబితా చేయబడిన ఆక్ష్రెడ్లు ఉనికిలో లేవు. పోర్ట్లాంట్ సిమెంట్ కెమిస్టీ బాగా అర్ధం చేసుకోబడింది. ఇది బోగ్స్ సమ్మేళనాలు అని పిలువబడే విభిన్న సమ్మేళనాలను కలిగి ఉంటుంది. ద్వారా గుర్తించబడినందున వాటికి ఆ పేరు వచ్చింది. R.H. బోగ్. బోగ్ యొక్క సమ్మేళనాలు, వాటి రసాయన సూత్రాలు మరియు సంక్షిప్తాలు మరియు సాధారణ శాతాలు బేబుల్ 36.2లో ఇవ్వబద్దాయి.

Name of the	Chemical formula*	Abbreviation	Typical
compound			percentage
Tricalcium Silicate	3CaOSiO2	C3S	54.1
Dicalcium Silicate	2CaOSiO2	C2S	16.6
Tricalcium Aluminate	3caOAl2O3	C3A	10.8
Tetracalcium Aluminoferrate	4CaO.Al2O3Fe2O3	C4AF	9.1

టేబుల్ 36.2: పోర్ట్ ల్యాండ్ సిమెంట్లో బోగ్స్ సమ్మేళనాలు.

టేబుల్ 36.2 జాబితా చేయబడిన నాలుగు సమ్మేళనాలతో పాటు, పోర్ట్ ల్యాండ్ సిమెంట్లో అనేక ఇతర సమ్మేళనాలు కనుగొనబడ్దాయి, అయితే ఈ నాలుగు సమ్మేళనాలు చాలా ముఖ్యమైనవి. సిమెంట్ నమూనాలో ఈ సమ్మేళనాల పరిమాణం మారవచ్చు మరియు సిమెంట్ యొక్క లక్షణాలను నిర్ణయించవచ్చు.

#### 36.1.2 సిమెంట్ యొక్క అమరిక మరియు గట్టిపడటం:

నీటి సిమెంట్తో సంబంధంలో గట్టి ద్రవ్యరాశికి సెట్ చేస్తుంది మరియు ఈ దృగ్విషయాన్ని సిమెంట్ అమరిక అంటారు. సిమెంట్ యొక్క అమరిక మరియు గట్టిపడటం అనేది చాలా సమయం తీసుకునే (పక్రియ. అనేక సెమాల్ట్ అమరిక కోసం సిద్ధాంతాలు (పతిపాదించబడ్డాయి మరియు ఇది రెండు ముఖ్యమైన (పక్రియలను కలిగి ఉ ంటుందని సాధారణ ఒప్పందం ఉంది. ఇవి ఆర్ట్రీకరణ మరియు స్ఫటికీకరణ. నీరు సిమెంటుతో కలిపినప్పుడు హైడ్రేషన్ (ప్రారంభ దశ. దీని తరువాత వివిధ సమ్మేళనాల స్పటికీకరణ జరుగుతుంది.

సిమెంట్ మరియు నీటి మిశ్రమం 'సిమెంట్ పేస్ట్'ని ఏర్పరుస్తుంది. దీనిలో సిమెంట్ యొక్క భాగాలు హైడ్రేట్ అవుతాయి మరియు జెల్ మరియు స్పటికాకార ఉత్పత్తులను ఏర్పరుస్తాయి. నీటిలో ఈ ఉత్పత్తుల యొక్క ద్రావణీయత తక్కువగా ఉన్నందున, అవి పేస్ట్ గట్టిపడటానికి కారణమవుతాయి. (గట్టిగా) పేస్ట్ యొక్క ఈ ప్రారంభ గట్టిపడటాన్ని సిమెంట్ యొక్క అమరిక అంటారు. దాదాపు 25 గంటల్లో సెట్టింగ్ ప్రక్రియ పూర్తవుతుంది. పేస్ట్ చాలా కాలం పాటు గట్టిపడటం కొనసాగుతుంది. ఈ ప్రక్రియను గట్టిపడటం అని పిలుస్తారు మరియు మరింత జెల్ సమాచారం మరియు ఆర్టీకరణ ఉత్పత్తుల యొక్కక్రమంగా స్ఫటికీకరణను కరిగి ఉంటుంది. గట్టిపడే ప్రక్రియ దాదాపు ఒక సంవత్సరంలో పూర్తవుతుంది, అయితే ఈ ప్రక్రియ ఒక దశాబ్దం పాటు కొనసాగుతుంది. రెండు ప్రక్రియలు Fig. 36. 2లో రేఖాచిత్రంగా చూపబడ్దాయి.



Fig. 36. 2: సిమెంట్ యొక్క అమరిక

బేబుల్ 36.2లో జాబితా చేయబడిన విభిన్న సమ్మేళనాలు ఆర్టీకరణ రేట్లు, సెట్టింగు సమయం మరియు బలం వంటి విభిన్న లక్షణాలను కలిగి ఉంటాయి. ఇవి వేర్వేరు సమయ వ్యవధిలో 'సెట్' అవుతాయి మరియు చాలా కాలం పాటు సిమెంట్ యొక్క బలం అభివృద్ధికి దోహదం చేస్తాయి. కెమిట్టీ పరంగా, నీటితో సిమెంట్ యొక్క మొదటి

# $C_3A + 6H_2O \rightarrow C_3A. 6H_2O$

ఈ ప్రతిచర్య వేడి పరిణామంతో కొనసాగుతుంది. నీటితో కొన్ని గంటల పరిచయం తర్వాత, క్రింది ప్రతిచర్య ప్రారంభమవుతుంది.

# $C_{3}S + H_{2}O \rightarrow C_{2}S + C.H_{2}O$

ఈ ప్రక్రియలు సిమెంట్ యొక్క ప్రారంభ అమరికకు కారణమవుతాయి. రెండవ దశలో, అంటే, సిమెంట్ గట్టిపడటం క్రింది ప్రతిచర్యలను కలిగి ఉంటుంది.

$$C_{3}A. 6H_{2}O + C.H_{2}O + 6H_{2}O \longrightarrow C_{4}A.13H_{2}O$$

$$C_{3}S + nH_{2}O \longrightarrow C_{2}S. nH_{2}O$$

#### 36.1.3 ప్రత్యేక సిమెంట్ల

సాధారణ అమరిక లేదా సాధారణ సిమెంట్ అని కూడా పిలువబడే పోర్ట్ ల్యాండ్ సిమెంట్ భవనాలు, రోడ్లు, వంతెనలు మరియు ద్యామ్లు మొదలైన నిర్మాణ కార్యకలాపాలలో చాలా వరకు విస్త్రతంగా ఉపయోగించబడుతుంది. అయినప్పటికీ, ఇది తినివేయు పరిస్థితులలో దరఖాస్తుకు అనుకూలం కాదు. ఇటువంటి అప్లికేషన్లు సిమెంట్లో ప్రత్యేక లక్షణాలు అవసరం. ఇవి ప్రత్యేక సిమెంట్ల అభివృద్ధికి దారితీశాయి. వీటిలో కొన్ని క్రింద ఇవ్వబడ్డాయి:

ఎ) అధిక అల్యూమినా సిమెంట్: అధిక ఉష్యోగత వద్ద సున్నపురాయి మరియు బాక్సైట్ (ఐరన్ ఆక్సైడ్, మెగ్నీషియం సిలికేట్ మొదలైన కొన్ని మలినాలను కలిగి ఉన్న అల్యూమినియం ధాతువు) మిశ్రమాన్ని కలపడం ద్వారా దీనిని తయారు చేస్తారు. ఇది అమరిక మరియు గట్టిపడటం యొక్క అధిక రేటును కలిగి ఉంది మరియు సుమారు 24 గంటలలో పూర్తి బలాన్ని పొందవచ్చు. దీనిని క్విక్ సెట్టింగ్ సిమెంట్ అని కూడా అంటారు. సముద్రపు నీరు మరియు సల్ఫేట్లతో కూడిన వ్యర్థాలతో సురక్షితంగా ఉపయోగించబడుతుంది. కాబట్టి ఇది అత్యుత్తమ రసాయన నిరోధకతను కలిగి ఉంటుంది.

బ) వైట్ పోర్ట్ల్యాండ్: ఇది ఇనుప సమ్మేళనాలు లేకపోవడంతో కూడిన సాధారణ అమరిక పోర్ట్ల్యాండ్ సిమెంట్ యొక్క ఖరీదైన రకం. ఐరన్ సమ్మేళనాలు లేకపోవడం వల్ల తెల్లదనాన్ని ఇస్తుంది. తెల్ల సిమెంట్ ఖరీదైనది, ఎందుకంటే దాని తయారీకి ముడిపదార్థాల అధిక స్వచ్ఛత అవసరం. సున్నపు రాయి మరియు మట్టి. ఇది పలకల తయారీలో మరియు పాలరాయి నిర్మాణాల మరమ్మత్తులో అప్లికేషన్లను కనుగొంటుంది. వైట్ పోర్ట్ల్యాండ్ సిమెంట్ అదనపు ప్రయోజనాన్ని కలిగి ఉంటుంది.

సౌందర్య అనువర్తనాన్ని అందించడానికి వివిధ రంగు పదార్థాలతో (పిగ్మెంట్లు) కలపాలి. (కోమియం ఆక్రైడ్ ఆకుపచ్చ రంగును ఇస్తుంది, కోబాల్ట్ ఆక్రైడ్ నీలం రంగును ఇస్తుంది.

163

సి) సోరెల్ సిమెంట్ (మెగ్నీషియం ఆక్సిక్లోరైడ్ సిమెంట్): ఈ సిమెంట్ను డ్రెంచ్ రసాయన శాస్ర్రవేత్త సోరెల్ కనుగొన్నారు మరియు 20% MgCl₂ ద్రావణాన్ని కాల్సినేటెడ్ మాగ్నసైట్ మరియు కాస్టిక్ (NaOH) యొక్క మెత్తగా గ్రౌండ్ మిశ్రమానికి జోడించడం ద్వారా పొందబడుతుంది. ప్రధాన భాగం మెగ్నీషియం ఆక్సిక్లోరైడ్ (3MgO.MgCl₂. 12H₂O). సోరెల్ సిమెంట్ ప్రధానంగా ఫ్లోరింగ్ కోసం ఉపయోగించబడుతుంది మరియు దంత పూరకాలలో కూడా ఉపయోగించబడుతుంది.

డి) వాటర్ ప్రూఫ్ సిమెంట్: పోర్ట్ ల్యాండ్ సిమెంట్ తయారు చేసేటప్పుడు గైండింగ్ సమయంలో కాల్షియం లేదా అల్యూమినియం స్టిరేట్ వంటి వాటర్ ప్రూఫ్ పదార్థాన్ని కలపడం ద్వారా ఇది లభిస్తుంది. కొన్నిసార్లు సబ్బులు, మైనపులు మరియు బిటుమెన్ మొదలైన పదార్థాలు కూడా నీటిని తిప్పికొట్టే లక్షణాలను సాధించడానికి ఉపయోగిస్తారు.

#### 36.1.4 సిమెంట్ అప్లికేషన్స్

సిమెంట్ సాధారణంగా ఉపయోగించబడదు; ఇది సాధారణంగా నిర్దిష్ట పూరకాలతో లేదా ఇసుక, చూర్ణం రాయి, కంకర, స్లాగ్ మొదలైన వాటితో కలుపుతారు. పూరక లేదా సంకలితం మరియు కూర్పు యొక్క స్వభావంపై ఆధారపడి మూడు విస్తృత రకాల మిశ్రమాలు ఉన్నాయి. ఇవి

i) మోర్టార్ ii) కాంక్రీట్ మరియు iii) రీనోఫోర్న్ కాంక్రీట్ నిర్మాణం (RCC)

i) మోర్టార్: ఇది సిమెంట్ మరియు ఇసుక మిశ్రమానికి నీటిని జోడించడం ద్వారా పొందబడుతుంది. ఫలితంగా వచ్చే పేస్ట్ సు సిమెంట్–మోర్టార్ అంటారు. మోర్టార్ బైండింగ్ ఇటుకలు మరియు రాళ్ళు మొదలైన వాటిలో మరియు గోడలను ప్లాస్టరింగ్ చేయడంలో అప్లికేషన్లను కనుగొంటుంది.

ii) కాంక్రీటు: ఇది ఇసుక, ముతక రాయి, రాయి, కంకర లేదా స్లాగ్ వంటి సిమెంట్ మరియు చక్కటి మరియు ముతక జడ ఖనిజ కంకరల మిశమాన్ని తయారు చేయడం ద్వారా ఏర్పడుతుంది. కాంక్రీటును ఏదైనా కావలసిన ఆకృతిలో ఉంచవచ్చు. కాంక్రీట్ రోడ్లు, పైకప్పులు, భవనంలోని నిలువు వరుసలు, పునాది పనులు మొదలైన వాటి తయారీలో అప్లికేషన్లను కనుగొంటుంది.

iii) రీస్ఫోర్ట్స్ కాంక్రీట్ నిర్మాణం (R.C.C.): కొన్నిసార్లు నిర్మించిన నిర్మాణం, బ్రిడ్జ్ అని చెప్పాలంటే, చాలా భారం పడుతుంది. అటువంటి అనువర్తనానికి సాదా కాంక్రీట్ నిర్మాణం తగినది కాదు ఎందుకంటే కాంక్రీటు తక్కువ ఒత్తిడిని కలిగి ఉంటుంది. అటువంటి సందర్భాలలో, లోడ్ తీసుకోవడానికి సహాయపడే ఇనుము లేదా ఉక్కు కడ్డీల నెట్వర్క్ ను చేర్చడం ద్వారా నిర్మాణం బలో పేతం చేయబడుతుంది (లేదా బలో పేతం చేయబడింది). ఈ రకమైన నిర్మాణాన్ని రీన్ఫోర్డ్ కాంక్రీట్ కున్ఫక్షన్ (R.C.C.) అని పిలుస్తారు మరియు వంతెనలు, తోరణాలు, పైకప్పులు, గిర్డర్లు, నేల కిరణాలు మొదలైన వాటి నిర్మాణంలో ఉపయోగిస్తారు.

164

# ఇంటెక్ట్ ర్లుశ్నలు 36.1 1. పోర్ట్ ల్యాండ్ సిమెంట్ అంటే ఏమిటి? 2. పోర్ట్ ల్యాండ్ సిమెంట్ యొక్క దాని ప్రధాన ముడి పదార్ధాలు ఏమిటి? 3. సిమెంట్ అమర్చడం ద్వారా మీరు ఏమి అర్ధం చేసుకున్నారు? 4. వివిధ రకాల ప్రత్యేక సిమెంట్ల పేర్లను జాబితా చేయండి.

#### 36.2 గ్లాస్

గ్లాస్ మరియు దాని సాధారణ అనువర్తనాలతో సుపరిచితం. గ్లాస్ అనేది 'దృఢమైన, నిరాకార పారదర్శక లేదా అపారదర్శక సూపర్ కూల్డ్ లిక్విడ్'గా నిర్వచించబడింది. అంటే గాజు అనేది ఘనపదార్థం కాదు కానీ కాంతి గుండా వెళ్ళడానికి అనుమతించే దృఢమైన పదార్థం. ఇంకా, ఇది నిరాకారమైనది, అంటే ఇది స్పటికాకార ఘనపదార్థాల యొక్క సాధారణ త్రిమితీయ అంతర్గత నిర్మాణ లక్షణాన్ని కలిగి ఉండదు. గ్లాస్ చాలా ఎక్కువ

స్నిగ్ధతను కలిగి ఉంటుంది మరియు సాధారణంగా చాలా కాలం పాటు (ప్రాంతాలపై అమర్చదు. ఇసుక, క్షార లోహ కార్బోనేట్లు ఆల్కలీస్ ఎర్త్ కార్బోనేట్లు మరియు కొన్ని ఇతర సంకలితాల కలయిక ద్వారా గాజును పొందవచ్చు. గ్లాస్ అనేది సిలికా అధికంగా ఉన్న క్షార మరియు ఆల్కలీన్ ఎర్త్ లోహాల సిలికేట్ల మిశ్రమం. గ్లాసుల యొక్క కొన్ని వాస్తవాలలో అల్ 2O₃, Fe2O₃, మొదలైనవి చిన్న మొత్తంలో ఉండవచ్చు. కొన్ని సాధారణ రకాలైన అద్దాలు బేబుల్ 36.3లో ఇవ్వబద్దాయి.

Types of glass	MI	MII	Approximate formula
Soda lime glass or	Na	Ca	Na ₂ O.CaO.6SiO ₂
Soda glass			
Potash lead glass	К	Pb	K ₂ O.pbo.6SiO ₂

Table 36.3: Types of Glas

#### 36.2.1 గ్లాస్ తయారీ

నేడు అనేక రకాల అద్దాలు ప్రసిద్ధి చెందాయి మరియు ముడి పదార్థాల కూర్పును మార్చడం ద్వారా వీటిని తయారు చేస్తారు. ప్రాథమిక ముడి పదార్థాలు మరియు నిర్ణయించడంలో వాటి పాత్ర గాజు యొక్క లక్షణాలు క్లుప్తంగా క్రింద వివరించబద్దాయి:

#### ఎ) ముడి పదార్శాలు

i) ఇసుక: ఇది సిలికాకు మూలం. – గాజు యొక్క ప్రధాన భాగం. గాజు తయారీకి ఉపయోగించే ఇసుక. దాదాపు 99.1 – 99.7% SiO₂ కలిగి ఉండే దాదాపు స్వచ్ఛమైన క్వార్ట్ అయి ఉండాలి. ఇసుక రేణువులు ఏకరీతిగా మరియు మితమైన పరిమాణంలో ఉండాలి. పెద్ద కణాలు ప్రతిస్పందించడానికి నెమ్మదిగా ఉంటాయి, అయితే చాలా సూక్ష్మమైన కణాలు హింసాత్మక ప్రతిచర్యకు కారణమవుతాయి.

ii) క్షార లోహ సమ్మేళనాలు: (Na₂CO₃, K₂CO₃, NANO₃, KNO₃, Na₂SO₄). ఇవి Na₂O (సోదా గాస్లో) మరియు K₂O (హార్డ్ గ్లాస్లో) యొక్క మూలాలు.

iii) అల్మలీస్ ఎర్త్ సమ్మేళనాలు: (CaO, CaCO₃ మరియు BaCO₃). ఇవి డోలమైట్ (CaCO₃, MgCO₃) నుండి లైమ్ స్టోన్ మరియు బర్న్ లైమ్ ద్వారా అందించబడతాయి. డోలమైట్ గాజు యొక్క భౌతిక లక్షణాలను నియంత్రించడంలో సహాయపడే MgOని కూడా అందిస్తుంది. ఆల్మలీన్ ఎర్త్ సమ్మేళనాలు గాజు యొక్క అధిక వక్రీభవన సూచికకు దోహదం చేస్తాయి.

iv) హెవీ మెటల్ ఆక్రైెడ్లు (ZnO, PbO, Pb₂O₄ మరియు PbO₃O₄) లెటార్ట్ (PbO) లేదా రెడ్ లెడ్ Pb₃O₄) ఫ్లింట్ గ్లాస్ లేదా క్రిస్టల్ గ్లాస్లో సీసం మూలంగా ఉపయోగించబడతాయి. ఇది గాజుకు మెరుపు మరియు అధిక వక్రీభవన సూచికను అందిస్తుంది.

v) Feldspar Al₂O₃ యొక్క చౌక మూలం. Feldspars M1₂O. Al₂O₃. 6SiO₂ అనే సాధారణ సూత్రాన్ని కలిగి ఉంటుంది, ఇక్కడ MI Na లేదా K లేదా రెండింటినీ సూచిస్తుంది. అందువల్ల, ఫెల్డ్ స్పార్ అదనపు ప్రయోజనాన్ని కలిగి ఉంది, ఎందుకంటే ఇది Na₂O, K₂O మరియు సిలికాను కూడా అందిస్తుంది. అల్యూమినా (Al₂O₃) ఉ షోణ్దగతలో ఆకస్మిక మార్పులకు గాజును తట్టుకునేలా చేస్తుంది.

vi) బోరాక్స్ అమిన్ లేదా భాగం మరియు బోరోనాక్ష్రెడ్ (B2O3) మరియు Na2O యొక్క మూలం. బోరాక్స్ గాజు విస్తరణ గుణకాన్ని తగ్గిస్తుంది మరియు దాని ఫ్యూసిబిలిటీ, రసాయన మన్నిక మరియు శుద్దీకరణను పెంచుతుంది.

vii) కల్లెట్లు లేదా విరిగిన గాజు ముక్కలు సాధారణంగా ముడి పదార్థం నుండి ఉత్పత్తి చేయబడిన గాజు యొక్క ఫ్యూసిబిలిటీని పెంచడానికి జోడించబడతాయి. మరో మాటలో చెప్పాలంటే, ఇది కలయిక యొక్క ఉష్ణోగతను తగ్గిస్తుంది, తద్వారా మనం తక్కువ ఉష్ణోగత వద్ద గాజును తయారు చేయవచ్చు. కల్లెట్లు 10% నుండి 80% ముడి పదార్థానికి దోహదం చేస్తాయి మరియు తద్వారా వ్యర్థ గాజును ఉపయోగించుకోవడానికి మంచి మార్గాన్ని అందిస్తాయి.

viii) పైన పేర్కొన్న ముడి పదార్థాలతో పాటు గాజుకు రంగు (కావాలనుకుంటే) అందించదానికి కొన్ని
మెటాలిక్ ఆక్ష్రెడ్లు కూడా జోడించబడతాయి. కొన్ని ప్రధాన గాజు రంగులు టేబుల్ 36.4లో ఇవ్వబడ్డాయి.

Colorant	Formula	Colour imparted	
Oxides of iron	FeO, Fe ² O ³	Light green or bottle green	
Cobalt oxide	CoO	Blue	
Chromium compounds	Cr ² O ³ ,K ² CrO ⁴	Green tending to yellow	
Cadmium sulphate	CdSO ⁴	Yellow	
Gold powder	Colloidal Au	Shades of ruby	

Table 36.4: Some common	ı gla	ss co	lorants
-------------------------	-------	-------	---------

## బి) తయారీ ప్రక్రియ:

కల్లెట్లతో సహా ముడి పదార్ధాలను గ్రౌండింగ్ మిల్లలో పొడి చేసి సరైన నిష్పత్తిలో కలుపుతారు. ఈ పొడిని అప్పుడు బహిరంగ లేదా కప్పబడిన కొలిమిలో కలుపుతారు. MnO మొదలైన కొన్ని దెకలరెంట్లు జోడించబడతాయి మరియు వాయువుల పరిణామం అగిపోయే వరకు వేడి చేయడం కొనసాగించబడుతుంది. ఈ దశలో కలరింగ్ మెటీరియల్ జోడించబడుతుంది మరియు సజాతీయ ద్రవ్యరాశిని పొందే వరకు వేడి చేయడం కొనసాగించబడుతుంది. ఇది క్రమంగా ఒక నిర్దిష్ట స్థాయి ప్లాస్టిసిటీకి చల్లబడుతుంది, తద్వారా ఇది సులభంగా నిర్వహించబడుతుంది. అలా పొందిన గాజును మదర్ గ్లాస్ అంటారు. కావలసిన ఆకారాన్ని పొందడానికి అది ఊడి లేదా అచ్చు వేయబడుతుంది. వ్యాసాలు నెమ్మదిగా చల్లబడతాయి. ఈ ప్రక్రియను ఎనియలింగ్ అంటారు. పూర్తయిన గాజు ఉత్పత్తిని శుభపరచడం, కత్తిరించడం, గ్రౌండింగ్ చేయడం మరియు పాలిష్ చేయడం మొదలైన ప్రక్రియల తర్వాత పొందబడుతుంది.

## 36.2.2 గాజు / గ్లాస్ లక్షణాలు

- ఇది ప్రకృతిలో నిరాకారమైనది, అంతర్గత క్రమంలో తక్కువ పరిధిని కలిగి ఉంటుంది.
- దీనికి పదునైన ద్రవీభవన స్థానం లేదు. గ్లాస్ వేడి చేయడంలో క్రమంగా మృదువుగా మరియు మృదువుగా మారుతుంది మరియు చివరికి ప్రవహించడం ప్రారంభమవుతుంది.
- శీతలీకరణపై, వేడి ద్రవం క్రమంగా ఒక జిగట ద్రవంగా చల్లబడుతుంది, దానిని కావలసిన ఆకారంలో ఉన్న వస్తువులుగా మార్చవచ్చు.
- ఇది పారదర్శకంగా లేదా అపారదర్శకంగా ఉండవచ్చు.
- ఇది చాలా జడమైనది మరియు హైడ్రోజన్ ఫ్లోరైడ్ మరియు కొన్ని ఆల్కారిస్ మినహా సాధారణ రసాయనాలచే తక్షణమే ప్రభావితం కాదు.
- ఇది అధిక కండెుసర్ బలాన్ని కలిగి ఉంది, దీనిలో ఆర్దర్ చేయబడిన అంతర్గత నిర్మాణం లేదు.
- ఇది వేడి మరియు విద్యుత్ నిరోధకం.

36.2.3 Ttypes of Glasses :

వాణిజ్యపరంగా అద్దాలు అనేక రకాలుగా అందుబాటులో ఉన్నాయి. ఇవి సాధారణ విండో పేస్ నుండి బుల్లెట్ (ఫ్రాఫ్ గ్లాస్ వరకు విభిన్నమైన అప్లికేషన్ల కోసం ఉపయోగించబడతాయి. కొన్ని రకాల అద్దాలు మరియు వాటి ఉపయోగాలు క్రింద చర్చించబడ్దాయి.

i) సోడా గ్లాస్ లేదా సాఫ్ట్ గ్లాస్: ఇది సాధారణంగా ఉపయోగించే, తక్కువ నాణ్యత, చవకైన గాజు. ఇది తయారు చేయబడిన మొత్తం గాజులో 95% ఉంటుంది మరియు ఇసుక (సిలికా), కాల్షియం కార్బోనేట్ (నిమ్మ రాయి) మరియు సోడా యాష్ (Na₂O₃) కలపడం ద్వారా తయారు చేయబడుతుంది. Na₂O.CaO.6SiO₂లో ఉజ్జాయింపు కూర్పు. ఇది 70- 74% SiO₂, 8 నుండి 13% CaO మరియు 13-18% Na₂O కలిగి ఉంటుంది. Al₂O₃లో దాదాపు 2% అశుద్దంగా ఉండవచ్చు. సాపేక్షంగా తక్కువ ఉష్ణోగత వద్ద మృదువుగా ఉంటుంది కాబట్టి దీనిని సాఫ్ట్ గ్లాస్ అంటారు. సోడా గ్లాస్ ఎలెక్టిక్ బల్బులు, కిటికీ పేన్లు, సీసాలు, జాడీలు మొదలైన వాటి తయారీలో కూడా అనువర్తనాన్ని కనుగొంటుంది.

ii) బీడ్ గ్లాస్ లేదా ఫ్లింట్ గ్లాస్: లిథార్జ్ (PbO), పొటాషియం కార్బోనేట్, సోడా యాష్, లైమ్ స్టోన్ మరియు సిబికాను సరైన నిష్పత్తిలో కలపడం ద్వారా తయారు చేస్తారు. ఉజ్జాయింపు కూర్పు K₂O.PbO.6SiO₂. ఇది దాదాపు 45% సిబికా మరియు లెడ్ ఆక్రైడ్, Na₂O, K₂O మరియు CaO యొక్క వేరియబుల్ మొత్తాలను కలిగి ఉంటుంది. అధిక సీసం-కంటెంట్ గ్లాసెస్ X-కిరణాలు మరియు y-కిరణాలకు వ్యతిరేకంగా షీల్డగా ఉపయోగించబడతాయి. ఎక్స్-రే మరియు y-రే స్కింటిలేషన్ యూనిట్లు వ్యవస్థాపించబడిన భవనాలలో ఇవి ఉపయోగించబడతాయి. అణు రేడియేషన్ల నుండి రక్షించడానికి అణు సంస్థాపనలలో కూడా వీటిని ఉపయోగించవచ్చు. అంతేకాకుండా, ఈ అనువర్తనాలు, లెన్స్ల్, నాణ్యమైన టేబుల్ వేర్ (క్రిస్టల్ వేర్), అలంకారమైన లేదా కృతిమ ఆభరణాలు, కృతిమ విలువైన రాళ్లు మరియు విద్యుత్ ఇన్సులేషన్లాను అనుకరించడం వంటి ఆప్టికల్ భాగాలను తయారు చేయడంలో లెడ్ గ్లాస్ విస్త్రతమైన ఉపయోగాన్ని కనుగొంటుంది.

iii) గట్టి (లేదా బెంపర్డ్) గాజు: ఇది ఖచ్చితంగా ఒక రకమైన గాజు కాదు, కానీ ఎనియలింగ్ చేయడానికి ముందు గాజు వస్తువుకు చేసే చికిత్స. వేడి కథనం వేడి నూనెలో ముంచినది. అంతర్గత పొర ఒత్తిడి లేదా ఉద్రిక్తత స్థితిలో ఉన్న చోట వ్యాసం యొక్క బయటి పొర తగ్గిపోతుంది మరియు గట్టిపడుతుంది. ఉపరితలం విచ్ఛిన్నమైతే, అది అనేక ముక్కలుగా విరిగిపోతుంది. ఈ విధానాన్ని గ్లాస్ బెంపరింగ్ అంటారు. ఇటువంటి గాజు చాలా బలంగా మరియు కఠినమైనది మరియు అధిక యాంత్రిక మరియు థర్మల్ షాక్స్ తెంపరింగ్ అంటారు. ఇటువంటి అద్దాలు ఆటోమేటిక్ తలుపులు, పెద్ద షోకేస్ తయారీలో ఉపయోగిస్తారు. టప్డ్ గ్లాస్ కార్లు, ట్రక్కులు మరియు ఏరో పేన్ల విండ్ షీల్డ్లలుగా కూడా అప్లికేషన్ను కనుగొంటుంది.

iv) లామినేటెడ్ సేఫ్టీ గ్లాస్: పాలీ వినైల్ బ్యూటిరల్ ప్లాస్టిక్ లేదా వినైల్ అక్యూట్ రెసిన్ యొక్క పలుచని పొర మరియు వాటి మధ్య ఒక బంధన పదార్థం (అంటుకునేది) ఉన్న రెండు లేదా మూడు ప్లాట్ గ్లాస్ షీట్లను నొక్కడం లేదా

168

బంధించడం ద్వారా ఇది పొందబడుతుంది. వేడి మరియు పీడనం సహాయంతో వీటిని సిమెంట్ చేయవచ్చు. గ్లాస్ శీతలీకరణపై కఠినంగా మారుతుంది మరియు ఉష్ణోగత మరియు ప్రక్రియలో ఆకస్మిక మార్పులతో నిలబడగలదు. పగలడంతో, గాజు ముక్కలు ఎగిరిపోవు, అంటే అది పగిలిపోతుంది. ఇటువంటి గాజు అనేది ప్రవేశ ద్వారాలు, స్టైడింగ్ తలుపులు, స్కైలైట్లు, ఎత్తైన భవనాల వాలుగా కనిపించే కిటికీలు, మొదలైనవి. ఇవి కార్లు మరియు ఆటోమొబైల్స్ యొక్క విండ్ స్క్రీస్లలుగా కూడా అప్లికేషన్ను కనుగొంటాయి. వినైల్ రెసిన్ యొక్క ఆల్టర్నేటింగ్ లేయర్తో అనేక గాజు పొరలు ఘనీభవించినట్లయితే మనం బుల్లెట్ ప్రూఫ్ గాజును పొందవచ్చు.

v) ఇన్సులేటెడ్ గ్లాస్: చుట్టుకొలతలో థర్మల్గా సీలు చేయబడిన రెందు గాజు పేస్ల మధ్య అన్హైడ్రస్ (లేదా పొడి) గాలి వంటి అవమానకరమైన పదార్థాలను చొప్పించడం ద్వారా ఇది తయారు చేయబడుతుంది. ఇటువంటి గ్లాస్ మాడ్యూల్స్ భవనం లోపల బయట ఉన్న తీవ్రమైన వాతావరణ పరిస్థితుల నుండి రక్షించబడే ప్రదేశాలలో ఉపయోగించబడతాయి. తీవ్రమైన వాతావరణ పరిస్థితుల్లో మూడు పేన్లు మరియు రెండు పొరల ఇన్సులేషన్ ఉన్న మాడ్యూల్ ఉపయోగించవచ్చు. ఈ మాడ్యూల్స్ వేసవిలో గదిని చల్లగా మరియు శీతాకాలంలో వెచ్చగా ఉంచుతాయి. పైన పేర్కొన్న వాటితో పాటు, టేబుల్వేర్, కెమికల్ కంటైనర్లు మరియు ఉపకరణాలు, ఆప్టికల్ లెన్స్లు, గాగుల్స్, నియోన్సింగ్లు, క్యాథోడ్ రే ట్యూట్లు మరియు మరెన్నో తయారీలో అప్లికేషన్లాను కనుగానే అనేక ఇతర రకాల గాజులు ఉన్నాయి.

## ఇంటెక్న్ ప్రశ్నలు 36.2

1. గాజు తయారీలో ఉపయోగించే వివిధ ముడి పదార్థాలను జాబితా చేయండి.

.....

2. సోడా గ్లాస్ యొక్క రసాయన కూర్పు ఏమిటి?

.....

.....

3. గాజు ట్యాంపరింగ్ ద్వారా మీరు ఏమి అర్థం చేసుకున్నారు?

.....

.....

4. గాజుకు రంగులుగా ఉపయోగించే పదార్ధాలకు రెండు ఉదాహరణలు ఇవ్వండి.

## 36.3 సిరామిక్స్

సెరామిక్స్ అనే పదం గ్రీకు పదం నుండి ఉద్భవించింది, కెరామోన్ అంటే 'బర్న్ స్టఫ్'. ఇది అధిక ఉష్ణోగత

ప్రక్రియల ద్వారా తయారు చేయబడిన లేదా అధిక ఉష్ణోగ్రతల వద్ద తిరిగి ఉపయోగించే రసాయనికంగా అకర్బన పదార్థాల విస్తృత తరగతిని సూచిస్తుంది. ఇవి విస్తృతంగా క్రింది తరగతులుగా విభజించబద్దాయి:

(i) క్లే ఉత్పత్తులు(ii) వక్రీభవన సిరామిక్స్ఈ విభాగంలో మేము మట్టి ఉత్పత్తుల గురించి చర్చిస్తాము.

## (i) మట్టి ఉత్పత్తులు

బంకమట్టి ఉత్పత్తులు క్రింది రకాలుగా విభజించబద్దాయి.

i) నిర్మాణాత్మక బంకమట్టి ఉత్పత్తులు: ఇవి ఐరన్ ఆక్ష్రెడ్ను ముఖ్యమైన భాగాలలో ఒకటిగా కలిగి ఉంటాయి మరియు వీటిని కింగ్ ఇటుకలు, టెర్రకోట, మురుగు పైపులు మరియు పలకలు మొదలైన వాటికి ఉపయోగిస్తారు.

ii) తెల్లటి వస్తువులు లేదా తెల్లటి కుండలు: వీటిని కొన్ని ఫ్యూసిబుల్ సిలికేట్లతో కలిపి చైనా క్లే (లేదా కయోలిన్) నుండి తయారు చేస్తారు. వీటిలో చైనావేర్, పింగాణీ స్టోన్వేర్ మరియు విట్రస్ వేర్ వంటి ఉత్పత్తులు ఉ న్నాయి.

iii) కెమికల్ స్టోన్వేర్: వీటిని పిండిచేసిన రాళ్లు మరియు కుండలు మొదలైన వాటితో కలిపి వక్రీభవన మట్టి నుండి తయారు చేస్తారు. ఇవి సాధారణంగా చాలా బలంగా మరియు పోరస్ లేనివి ఉత్పత్తులు. ఇవి బాత్టబ్లు, వాష్ బేసిన్లు, సింక్లు మరియు డ్రైనేజీ పైపులు మొదలైన సానిటరీ ఫిక్చర్లను తయారు చేయడంలో అప్లికేషన్లను కనుగొంటాయి.

(ii) వక్రీభవన సిరామిక్స్ : వక్రీభవన సిరామిక్స్ అనేది సిరామిక్ పదార్థాల ఉపసమితి, ఇవి అధిక ఉష్ణోగతలు, థర్మల్ షాక్ మరియు దూకుడు రసాయన వాతావరణాలకు అసాధారణమైన ప్రతిఘటనను ప్రదర్శించడానికి ప్రత్యేకంగా రూపొందించబడ్డాయి మరియు తయారు చేయబడ్డాయి. ఈ సెరామిక్స్ వివిధ పారిశ్రామిక అనువర్తనాల్లో లైనింగ్ మెటీరియల్గా ఉపయోగిస్తారు, ఇక్కడ అవి తీవ్రమైన వేడి, కరిగిన లోహాలు, స్లాగ్, వాయువులు మరియు ఇతర సవాలు పరిస్థితులతో సంబంధంలోకి వస్తాయి.

# 36.3.1 క్లే అంటే ఏమిటి?

భౌగోళికంగా, బంకమట్టి అనేది వాతావరణ ప్రభావాల వల్ల చాలా కాలం పాటు రాళ్ల విచ్ఛిన్నం ద్వారా పొందిన ఉత్పత్తులు. వీటిలో ప్రధానంగా అల్యూమినియం సిలికేట్లు ఉంటాయి. మైకా, క్వార్ట్ మరియు ఇసుక మొదలైన ఇతర పదార్ధాలతో కొన్ని సాధారణ మట్టి మరియు వాటి రసాయన సూత్రాలు:

i) ඩ්යිවිස් Al²O³ 2SiO².H²O

ii) కయోలినైట్ Al²O³ 2SiO².2H²O

iii) హాలో సైట్ Al²O³ 2SiO².3H²O

ఇవి ఆర్ధీకరణ యొక్క నీటి అణువుల సంఖ్య పరంగా మాత్రమే విభిన్నంగా ఉంటాయి. మట్టికి ప్లాస్టిసిటీ అని

పిలువబడే ఒక ముఖ్యమైన లక్షణం ఉంది, ఎందుకంటే ఇవి నీటిలో కలపడం వల్ల ద్రవ్యరాశి వంటి ప్లాస్టిక్న ఏర్పరుస్తుంది, వీటిని సులభంగా కావలసిన ఆకారంలోకి మార్చవచ్చు. కుండల తయారీదారులు మట్టిని వివిధ ఆకారాలలోకి మార్చడం మీరు గమనించి ఉంటారు. తడి బంకమట్టి తగినంత దృఢత్వం కలిగి ఉంటుంది, తద్వారా అది నిలబడినప్పుడు వైకల్యం చెందదు.

## 36.3.2 స్ట్రక్చరల్ క్లే పొడక్ట్ర్

ఇటుకలు మరియు టైల్స్ వంటి నిర్మాణాత్మక బంకమట్టి ఉత్పత్తులు ఐరన్ ఆక్ష్రెడ్ మరియు ఇతర మలినాలను కలిగి ఉన్న సాధారణ మట్టి నుండి తయారు చేయబడతాయి.

i) ఇటుకలు: ఇవి పురాతనమైన మరియు విస్త్రతంగా ఉపయోగించే నిర్మాణ సామగ్రిలో ఒకటి. ఇవి చౌకగా ఉంటాయి, స్థానికంగా అందుబాటులో ఉంటాయి (కొండ ప్రాంతాలలో కాకుండా) మరియు మంచి బలాన్ని కలిగి ఉంటాయి. ఇటుకలను తయారు చేయడానికి ఉపయోగించే ప్రధాన ముడి పదార్థాలు మట్టి (అల్యూమినా) మరియు ఇసుక (సిలికా). చిన్న మొత్తాలలో సున్నం (కుంచించుకుపోయే వయస్సును తగ్గించడానికి మరియు బలాన్ని ఇవ్వడానికి) మరియు ఐరన్ ఆక్రైడ్ (ఇటుక కణాల కలయికకు మరియు ఇటుకలకు రంగు ఇవ్వడానికి) కూడా కలుపుతారు. ఇటుకల తయారీ క్రింది దశలను కలిగి ఉంటుంది:

1. సజాతీయత వరకు నీటితో మట్టిని పిసికి కలుపుట

2. ఇటుకలను అచ్చు మరియు ఎండబెట్టడం

ఇప్పుడు థర్మల్ పవర్ స్టేషన్లలోని వ్యర్థ ఉత్పత్తి అయిన పై యాష్ నుండి ఇటుకలు తయారవుతున్నాయి.

ii) టైల్స్: ఇవి మెరుగైన నాణ్యమైన బంకమట్టి (గులకరాళ్లు, గ్రిట్ మరియు ఇతర మలినాలు లేనివి) నుండి తయారు చేయబడతాయి మరియు ఫ్లోరింగ్, పేవ్మెంట్లు మరియు రూఫ్లెలు తయారు చేయడం మొదలైనవాటిలో ఉపయోగిస్తారు. అలంకరణ ప్రయోజనాల కోసం ఉన్నతమైన నాణ్యమైన పలకలను ఉపయోగిస్తారు. పలకలను సిద్ధం చేసేటప్పుడు గాజు మరియు కుండల మిశ్రమాన్ని కూడా మట్టికి కలుపుతారు, ఇది పలకలకు బలాన్ని అందిస్తుంది.

#### 36.3.3 తెల్లని వస్తువులు మరియు తెల్ల కుండలు

ఇవి తెలుపు లేదా లేత–(క్రీమ్ రంగు కలిగిన మట్టి ఉత్పత్తులు. వైట్వేర్లను చైనా క్లే, ఫెల్డ్ స్పార్ (K₂O.Al₂O₃ SiO₂.) మరియు ఇసుక లేదా చెకుముకిరాయి (SiO₂) నుండి తయారు చేస్తారు. వివిధ ఉత్పత్తులను పొందడానికి వీటిని వివిధ మొత్తాలలో ఉపయోగిస్తారు. ముడి పదార్థాలలో ఐరన్ ఆక్షైడ్లు ఏవీ లేదా అతితక్కువ మొత్తంలో ఉందవు.

వైట్వేర్లను సిద్ధం చేయడానికి ముడి పదార్థాలను మెత్తగా పొడి చేసి నీటితో కలుపుతారు. తడి మట్టిని

కావలసిన ఆకారంలో తయారు చేసి, ఎందబెట్టి, కాల్చిన మరియు మెరుస్తున్నది. గ్లేజింగ్ సమయంలో మట్టి రంద్రాలు వాటర్ ఫ్రూఫ్ మరియు మెరుస్తూ ఉండేలా ప్లగ్ చేయబడతాయి (మూసివేయబడతాయి). గ్లేజింగ్ అవసరాన్ని బట్టి అనేక మార్గాల్లో జరుగుతుంది. గ్లేజింగ్ మెటీరియల్స్ కొన్ని రంగుల భాగాలతో పాటు క్వార్ట్, ఫెల్డ్ స్పార్, సీసం మరియు బోరో –సిలికేట్లు మొదలైన గాజును రూపొందించే పదార్థాలు. ఇవి నీటిలో కలిపి ఘర్షణ దావణాన్ని (స్లిప్– గ్లేజ్ అని పిలుస్తారు) ఏర్పరుస్తాయి. గ్లేజ్ చేయవలసిన సామాను కొలిమి నుండి తీసివేయబడుతుంది మరియు గ్లేజ్– స్లిప్లో ముంచబడుతుంది మరియు అధిక ఉష్యోగత వద్ద కాల్చడం కొనసాగించబడుతుంది. గ్లేజ్ పదార్థం రంధ్రాలను ఫ్యూజ్ చేస్తుంది మరియు నింపుతుంది మరియు సామానుకు నిగనిగలాడే ఉపరితలాన్ని అందిస్తుంది.

## **36.3.4 కెమికల్ స్తోన్**వేర్

పేరు సూచించినట్లుగా, స్టోన్వేర్లు రాయిలా చాలా బలంగా ఉంటాయి. ముడి పదార్ధాలను అధిక ఉష్ణోగత వద్ద వేడి చేయడం ద్వారా ఇవి లభిస్తాయి. ఒక సాధారణ సోన్వేర్ను (గౌండింగ్ చేయడం ద్వారా తయారు చేయవచ్చు. మట్టి, చైన మట్టి, ఫెల్డిస్పార్ మరియు ఇసుక మిశ్రమం. అలా పొందిన ద్రవ్యరాశి వంటి ప్లానక్సు కావలసిన ఆకారంలో మల్చుకుంటారు. ఆకారపు కథనాలు సుమారు 1273K వద్ద ఎండబెట్టి మరియు వేడి చేయబడతాయి. ఇవి 1373K వద్ద ఉప్పు గ్లేజ్ చేయబడతాయి. ఉప్పు గ్లేజింగ్లో వేడి వస్తువును సోడియం కోరైడ్తో చల్లి, అధిక ఉష్మోగతతో వేడి చేస్తారు. సోడియం కోరైడ్ అవిరైపోతుంది మరియు సోడియం అల్యూమినియం సిలికేట్ను ఉత్పత్తి చేసే సామానుతో చర్య జరుపుతుంది. ఇది చాలా కరిగిపోతుంది మరియు వ్యాసం యొక్క ఉపరితలంపై రంద్రాలను నింపుతుంది. ఈ గ్లేజింగ్ (టీబ్మెంట్ లిక్విడ్లకు అభేద్యంగా ఉంటుంది. రసాయన స్టోన్వేర్లు తక్కువ శోషణ శక్తి, అధిక సాంద్రత మరియు రసాయన నిరోధకతను కలిగి ఉంటాయి. ఇవి వాటి రంగు యొక్క వైట్వేర్ ఇంటర్మ్ల్లల నుండి భిన్నంగా ఉంటాయి. బాత్ఓబ్లు, వాష్ బేసిన్లు, సింక్లలు మరియు డ్రైనేజీ పైపులు మొదలైన సానిటరీ ఫిక్చర్లల తయారీలో స్టోన్వేర్లను ఉపయోగిస్తారు.

## ఇంటెక్న్ ప్రశ్నలు 36.3

1. సిరామిక్స్ అంటే ఏమిటి?

.....

2. మట్టి ఉత్పత్తులు ఏమిటి? ఇవి ఎలా వర్గీకరించబడ్డాయి?

.....

.....

3. తెల్లని వస్తువులను తయారు చేయదానికి ఉపయోగించే ముడి పదార్థాలను జాబితా చేయండి.

.....

.....

4. రసాయన రాతి సామాను యొక్క వివిధ ఉపయోగాలు జాబితా చేయండి.

What we have learnt

- సిమెంటు ఒక అకర్బన పదార్థం, ఇది నీటితో కలిపినప్పుడు క్రమంగా గట్టి ద్రవ్యరాశిని ఇస్తుంది మరియు ఇటుకలు, రాళ్లు మొదలైన వాటిని కలపడానికి ఉపయోగించవచ్చు.
- వాటి కూర్పు, తయారీ విధానం మరియు అప్లికేషన్లలో విభిన్నమైన సిమెంట్ రకాలు ఉన్నాయి. వీటిలో, పోర్ట్ ల్యాండ్ సిమెంట్ ప్రస్తుతం ఎక్కువగా ఉపయోగించే సిమెంట్.
- పోర్ట్ ల్యాండ్ సిమెంట్ అనేక ఆక్రైడ్లను కలిగి ఉంటుంది, ఇవి టైకాల్షియం సిలికేట్, దైకాల్షియం సిలికేట్,
  టైకాల్షియం అల్యూమినేట్, టెటాకాల్షియం అల్యూమినో ఫెర్రేట్ మొదలైన సంక్లిష్ట సమ్మేళనాలుగా ఉంటాయి.
  వీటిని బోగ్స్ సమ్మేళనాలు అంటారు.
- సిమెంట్ అమరికలో ఆర్టీకరణ మరియు స్ఫటికీకరణ అనే రెండు ముఖ్యమైన ప్రక్రియలు ఉంటాయి. ఈ ప్రక్రియలకు ఎక్కువ సమయం పడుతుంది.
- సిమెంట్ అనువర్తనాన్ని బట్టి ఇసుక, ముతక రాయి, రాయి, కంకర లేదా స్లాగ్ మొదలైన అనేక సంకలితాలతో కలిపి ఉపయోగించబడుతుంది. ఈ కలయికలను సంకలితాన్ని బట్టి మోర్టార్ లేదా కాం(కీటు అంటారు. ఉక్కుతో పటిష్టపరచబడిన కాం(కీటును R.C.C.
- గ్లాస్ అనేది దృఢమైన నిరాకార పారదర్శక లేదా అపారదర్శక సూపర్ కూల్డ్ లిక్విడ్ 'ఇది సాధారణ త్రిమితీయ అంతర్గత నిర్మాణాన్ని కలిగి ఉండదు మరియు చాలా ఎక్కువ స్నిగ్గతను కలిగి ఉంటుంది.
- గాజు తయారీకి, ఇసుక, ఫెల్డ్ స్పార్, క్షార లోహం మరియు ఆల్మలీన్ ఎర్త్ సమ్మేళనాలు, హెవీ మెటల్ ఆక్పైద్లు మొదలైన ముడి పదార్ధాలు సరైన నిష్పత్తిలో మిళితం చేయబడతాయి, శక్తిని అందించబడతాయి మరియు కొలిమిలో కలపబడతాయి.
- కమర్షియల్ గ్లాసెస్ అనేక రకాలుగా అందుబాటులో ఉన్నాయి. సాధారణ విండో పేన్ల నుండి బుల్లెట్ ప్రూఫ్ గ్లాస్ వరకు విభిన్న అప్లికేషన్ల కోసం ఉపయోగించబడతాయి.
- సెరామిక్స్ అనేది రసాయనికంగా అకర్బన పదార్థాల యొక్క విస్త్రత తరగతిని సూచిస్తుంది, ఇవి అధిక ఉష్ణోగత ప్రక్రియల ద్వారా తయారు చేయబడతాయి లేదా అధిక ఉష్ణోగతల వద్ద ఉపయోగించబడతాయి మరియు మట్టి ఉత్పత్తులు మరియు రిప్రాక్టరీలుగా వర్గీకరించబడతాయి.
- క్లే అనేది స్పటికీకరణ యొక్క నీటి సంఖ్యలో భిన్నమైన అల్యూమినో సిలికేట్ల మిశ్రమాన్ని కలిగి ఉంటుంది.
- బంకమట్టి ఉత్పత్తులు నిర్మాణాత్మక మట్టి ఉత్పత్తులు (ఇటుకలు మరియు టెల్సెట్ వంటివి), తెల్లటి వస్తువులు మరియు రాతి సామానులుగా వర్గీకరించబడ్డాయి.

Terminal Questions

- 1. కింది వాటిని సరిపోల్చండి
- i) నీరు మరియు సిమెంట్ కలపడం దారితీస్తుంది
- ii) సిమెంట్ గట్టిపడే రెండవ దశ
- iii) మంచి రసాయన నిరోధకత కలిగిన సిమెంట్
- iv) పాలరాయి మరమ్మత్తులో ఉపయోగించే సిమెంట్
- v) దంత పూరకాలలో ఉపయోగించే సిమెంట్
- 2. Cement తయారీ ప్రక్రియను వివరించండి.
- 3. బోగ్ యొక్క సమ్మేళనాలు ఏమిటి మరియు ఏమిటి
- 4. సిమెంట్ యొక్క వివిధ అనువర్తనాలను చర్చించండి.
- 5. తెల్ల సిమెంట్ యొక్క ప్రభావము ఏమిటి? దాని అప్లికేషన్లలో కొన్ని ఇవ్వండి.
- 6. మధ్య భేదం చూపండి
  - a) మోర్టార్ మరియు కాంక్రీటు
  - b) కాంక్రీట్ మరియు R.C.C
- 7. గాజు తయారీ ప్రక్రియను వివరించండి.
- 8. ఇటుకల తయారీకి ఉపయోగించే వివిధ ముడి పదార్థాలను జాబితా చేయండి మరియు వాటి పాత్రను సూచించండి.
- 9. 'గ్లేజింగ్' అనే పదం ద్వారా మీరు ఏమి అర్థం చేసుకున్నారు? కొన్ని మట్టి ఉత్పత్తులు ఎందుకు మెరుస్తున్నవి?

## Answers

## 36.1

- పోర్ట్ ల్యాండ్ సిమెంట్ అనేది సాధారణంగా ఉపయోగించే సిమెంట్. ఇది కాల్షియం అల్యూమినియో సిలికేట్ల వంటి అనేక స్లిటికేట్లను కలిగి ఉంటుంది.
- 2. సున్నపు రాయి మరియు సుద్ధ వంటి సున్నపు పదార్థాలు మరియు బంకమట్టి, పొట్టు లేదా స్టేట్ మొదలైన ఆర్జిలేషియస్ పదార్థాలు సిమెంట్ యొక్క ప్రధాన భాగం. వీటితో పాటు, పొడి బొగ్గ లేదా ఇంధన నూనె మరియు జిప్సం (CaSO₄. 2H₂O) కూడా ఉపయోగిస్తారు.
- 3. సిమెంట్ అమరికలో ఆర్టీకరణ మరియు స్ఫటికీకరణ అనే రెండు ముఖ్యమైన ప్రక్రియలు ఉంటాయి. ఈ ప్రక్రియలకు చాలా సమయం పడుతుంది. నీరు మరియు సిమెంట్ కలపడం వల్ల సిమెంట్ యొక్క భాగాలు హైడ్రేట్ అవుతాయి మరియు జెల్ మరియు స్పటికాకార ఉత్పత్తులను ఏర్పరుస్తాయి. ఇవి పేస్ట్ గట్టిపడటానికి కారణమవుతాయి మరియు దానిని సిమెంట్ అమరిక అంటారు.

- ( ) ఎ. స్పటికీకరణ
- ( ) బి. పుంద్లు పదుట
- ( ) సి. మోర్టార్

(

(

- ) డి. హై అలుమినినా సిమెంట్
- ) ఇ. తెల్లటి సిమెంట్

4. ప్రత్యేక లక్షణాలతో వివిధ రకాల సిమెంట్ ఉన్నాయి. కొన్ని ప్రత్యేక సిమెంట్ల: అధిక అల్యామినా సిమెంట్, అయితే పోర్ట్ ల్యాండ్, సోరెల్ సిమెంట్ మరియు వాటర్ ప్రూఫ్ సిమెంట్.

#### 36.2

- 1. ఇసుక, క్షార లోహ సమ్మేళనాలు, ఆల్కలీస్ ఎర్త్ సమ్మేళనాలు, హెవీ మెటల్ ఆక్షైద్లు, బోరాక్స్ & కల్లెట్లు.
- 2. దయచేసి విభాగం 36.2.3ని చూడండి
- 3. దయచేసి 36.2.3ని చూడండి.
- 4. ఇనుము మరియు బంగారు పొడి యొక్క ఆక్రైద్లు

#### 36.3

- 1. దయచేసి విభాగం 36.3ని చూడండి
- 2. దయచేసి విభాగం 36.3.1ని చూడండి
- 3. చైనా క్లే, ఫెల్డ్స్పోర్ మరియు ఇసుక
- 4. బాత్ టబ్లు, వాష్ బేసిన్లు, సింక్లు & డ్రైనేజీ పైపులు.