
Senior Secondary Course
(Intermediate (APOSS) Course)

A.P.Open School Society, SCERT Campus, Opp. L.B.Stadium, Basheerbagh,
Hyderabad-500 001. Ph.No.040-23299568.

www.apopenschool.org; E-mail: diraposshyd@yahoo.in

COMPUTER SCIENCE

A.P. State Open School (APSOS), Hyderabad

330

2

ii

ANDHRA PRADESH OPEN SCHOOL SOCIETY

GOVERNMENT OF ANDHRA PRADESH, HYDERABAD

First Published - 2011

All Rights Reserved

No part of this publication may be reproduced, stored in a retrieval system
or transmitted, in any form or by any means without the prior permission, in
writing of the publisher, nor be otherwise circulated in any form of binding or
cover.

Printed in India
Laser Typeset at New Hitech Graphics, Hyderabad

Printed at Govt. Text Book Press, Hyderabad
Andhra Pradesh

C

iii

A few Words with You

Dear Learner,

It is hoped that you have the Computer awareness and that is why you

have chosen Computer Science as a subject. Through this course, you will be

introduced to the interesting world of computers. As an indispensable tool,

computers have penetrated into every field of human life. With this course, you

can improve your capabilities as well as efficiencies.

For this course, you receive two books as course material. In the first

book, you will be introduced to fundamentals of computer in six lessons.

The course material is written in a self-explanatory manner. After going

through this course material, you will notice that you do need any other reference

material.

For this course, you do not require any previous knowledge on computer.

From this course material, you will benefit a lot.

In the second book, the course material is presented in 10 lessons. The

second book is intended to meet the curricular needs of our state at +2 stage.

Kalapala Ananda Kishore
Director

APSOS, Hyderabad

iv

Computer Science

EDITORS

LESSON WRITERS

S.N.V.S.S.S.T. Murthy
Associate Professor
M.Sc.(Maths), MCA, M.Tech.(CSE)
Srinivasa Institute of Engg. & Technology
East Godavari Dist.

T. Vamshi Mohana Reddy
Reader
MCA, M.Tech (WT)
RBVRR Women's College,
Hyderabad.

D.S.N. Sastry
Prof. Dept. of M.Ed.
Vikas College of Education,
Vissannapeta,
Krishna Dist.

Dr.N.Srihari Reddy
M.Sc(Math's), M.Phil(Math's), M.Ed.,
Ph.D (Education)., Ph.D (Mathematics)
C.C.C.L(S.V.U), P.G.D.C.P. & S.A.,
Jyothishyamani,
Specialist, Speaker, Editor,
Translator and Writer in Education
Lecturer in Mathematics, S.R.S.Govt.
Jr.College (Boys),
Puttur, Chittoor Dt.-(A.P.)

CO-ORDINATOR

Smt. Beeram Uma Devi
M.Sc., B.Ed.
A.P.Open School Society, Hyderabad.

Sri Kalapala Ananda Kishore
M.Sc., M.Ed., P.E.

Diploma in Education (London)

CHIEF EDITOR

K. Bhanumathi
Lecturer
M.Tech (CSC)
RBVRR Women's College,
Hyderabad.

C. Jyothi Sree
Lecturer
M.Tech (CSC)
RBVRR Women's College,
Hyderabad.

Sri Danthuluri Narasimha Murthy
M.Sc., B.Ed.
A.P.Open School Society, Hyderabad.

Smt. K.Y.Padmini
M.Sc., M.Ed.

A.P.Open School Society, Hyderabad.

v

CONTENTS

 LESSON Page No.

1. Introduction to Problem Solving Techniques 1

2. Introduction to 'C' Programming 14

3. Input/Output Operations and Control Constructs 41

4. Functions 71

5. Arrays 97

6. Structures and Unions 114

7. Pointers and Dynamic Memory Allocation 132

8. Arrays and Linked Lists 147

9. Stacks and Queues 175

10. Sorting and Searching 198

Introduction to Problem Solving Techniques

Computer Science 1

1
Introduction to Problem Solving

Techniques

Learning objectives1.1

At the end of this lesson, you will be able to :

• understand and analyse the problem

• write the pseudocode which is a kind of structured English language for describing

algorithms.

• write step-wise algorithm

• know the meaning of flowchart

• know the basic parts of the flowchart such as flowchart symbols and the flow lines

connecting these symbols.

• Know the advantages and limitations of flowchart

 In order to solve an arithmetic problem which is not familiar with the steps involved in

solving that problem ,in such situation you will not be able to solve the problem. The same

principle applies in writing computer programs also. A programmer cannot write the instructions

to be followed by computer unless the programmer knows how to solve the problem manually.

 While writing a computer program, if the programmer leaves out some of the instructions

for the computer or writes the instructions in the wrong sequences, then the computer will calculate

Introduction1.2

Introduction to Problem Solving Techniques

2 Computer Science

a wrong answer. Thus, to produce an effective computer program, it is necessary that the

programmer writes each and every instructions in the proper sequence. Hence, in order to ensure

that the program instructions are appropriate for the problem and are in the correct sequence,

program must be plannned before they are written. In today’s world to solve a problem the most

commonly used problem solving techniques are procedures, algorithms, flowcharts and

pseudocodes.

(i) A procedure is a step by step method for performing a task or solving a problem,

presented with sufficient precision and detail, and in an appropriate form and language,

that it is completely and unambiguously interpretable and executable by the particular

agent or device intended to perform the procedure.

(ii) Algorithms are essential to the way computers process information, because a computer

program is essentially an algorithm that tells the computer what specific steps to perform

(in what specific order) in order to carry out a specified task, such as calculating

employees’ paychecks or printing students’ report cards. Thus, an algorithm can be

considered to be any sequence of operations which can be performed by a Turing-

complete system.

(iii) Pseudocode is an English like statements involved to solve a problem. Pseudocode

consists of short readable and formally-styled natural language used to explain specific

tasks within a program’s algorithm.

(iv) The flowchart is a means of visually presenting the flow of data through an information

processing systems, the operations performed within the system and the sequence in

which they are performed. In this lesson, we shall concern ourselves with the program

flowchart, which describes what operations (and in what sequence) are required to solve

a given problem. The program flowchart can be likened to the blueprint of a building.

As we know a designer draws a blueprint before starting construction on a building.

Similarly, a programmer prefers to draw a flowchart prior to writing a computer program.

A procedure is a method for accomplishing a result such as solving a problem or

performing a task. A procedure is usually considered to have the following characteristics:

1. It consists of a finite sequence of discrete steps.

2. Each step is an operation or instruction that can be performed by the agent or device

expected to carry out the procedure.

Characteristics of a procedure1.3

Introduction to Problem Solving Techniques

Computer Science 3

3. Each operation or instruction is finite in that it is represented by a finite number of

symbols.

The device or agent can carry out the procedure automatically, without additional

instructions or resort to outside guidance, by simply performing the sequence of operations

comprising the procedure.

Procedures consist of a finite number of discrete steps each of which is comprised of

a rule, or an instruction or operation that can be applied, performed or executed by the device

or agent that is expected to carry out the procedure. Although the steps of a procedure are ordered

in a sequence, and are performed in this order, some steps can consist of tests such as those

required to determine whether or not a problem has been solved, or a task has been completed.

Such tests can also determine what particular sequences of steps in the procedure are to be

performed when certain conditions are met, rather than others which might be performed under

different conditions.

Other steps in a procedure can consist of instructions that cause sequences of operations

or instructions to be repeated or iterated a number of times until specified conditions are met.

Consequently, although a procedure might consist of a relatively small number of steps, some

of these steps can be repeated so that the device or agent performing the procedure may actually

execute a relatively large number of operations to carry out some tasks or solve some problems.

Procedures may be devised that build or change things in the real world. These procedures

might be performed by machines or by human beings. The procedures of interest here, however,

are computational in nature. By “computational” in this context, it is meant that steps of a

computational procedure that a machine or a human being performs can consist of operations

such as the reading, writing, comparing, erasing, and replacing of symbols. The operations of

a computational procedure could include storing symbols in, and retrieving them from memory;

but these operations are simply special kinds of writing and reading operations. The symbols

of interest to us include graphemes or word forms, and symbols such as syntactic category labels.

1.4.1 Pseudocode

Definition:Pseudocode consists of short readable and formally-styled natural language used
to explain specific tasks within a program’s algorithm.

Definition, Description and Advantages of Pseudocode1.4

Introduction to Problem Solving Techniques

4 Computer Science

Pseudocode is an artificial and informal language that helps programmers develop
algorithms. Pseudocode is a “text-based” detail (algorithmic) design tool.

The rules of Pseudocode are reasonably straightforward. All statements showing
“dependency” are to be indented. These include while, do, for, if, switch. Examples below will
illustrate this notion.

Examples:

1. If student’s grade is greater than or equal to 60

Print “passed”

else

Print “failed”

2. Set total to zero

Set grade counter to one

While grade counter is less than or equal to ten

Input the next grade

Add the grade into the total

Set the class average to the total divided by ten

Print the class average.

3. Initialize total to zero

Initialize counter to zero

Input the first grade

while the user has not as yet entered the sentinel

add this grade into the running total

add one to the grade counter

input the next grade (possibly the sentinel)

if the counter is not equal to zero

set the average to the total divided by the counter

print the average

else

Introduction to Problem Solving Techniques

Computer Science 5

print ‘no grades were entered’

4. initialize passes to zero

initialize failures to zero

initialize student to one

while student counter is less than or equal to ten

input the next exam result

if the student passed

add one to passes

else

add one to failures

add one to student counter

print the number of passes

print the number of failures

if eight or more students passed

print “raise tuition”

Some Keywords That Should be Used :

For looping and selection, The keywords that are to be used include Do While...EndDo;
Do Until...Enddo; Case...EndCase; If...Endif; Call ... with (parameters); Call; Return; Return;
When; Always use scope terminators for loops and iteration.

As verbs, use the words Generate, Compute, Process, etc. Words such as set, reset,
increment, compute, calculate, add, sum, multiply, ... print, display, input, output, edit, test , etc.
with careful indentation tend to foster desirable pseudocode.

Do not include data declarations in pseudocode.

1.4.2 Advantages of pseudocode

1. Pseudocode cannot be compiled nor executed and there are no real formatting or syntax

rules.

2. It is simply one step - an important one - in producing the final code.

Introduction to Problem Solving Techniques

6 Computer Science

3. The benefit of pseudocode is that it enables the programmer to concentrate on the

algorithms without worrying about all the syntactic details of a particular programming

language.

4. In fact, you can write pseudocode without even knowing what programming language

you will use for the final implementation.

1.5.1 A simple definition:

A set of instructions for solving a problem.

The algorithm is either implemented by a program or simulated by a program. Algorithms
often have steps that iterate (repeat) or require decisions such as logic or comparison.

1.5.2 Characteristics of an Algorithm

An algorithm must possess the following characterisitics:-

1. Each and every instruction should be precise.

2. Each instruction should be such that it can be performed in a finite time.

3. One or more instructions should not be repeated infinitely. This ensures that the algorithm

 will ultimately terminate.

4. After performing the instruction, i.e after the algorithm terminates, the desired results must

be obtained.

Example: Write an algorithm to add two numbers.

 Step1: start

 Step2: Read a, b (or) Initialize a=2,b=3

 Step3: c= a+b

 Step4: print ‘sum is’ c (or) Write ‘sum is’ c

 Step5: stop

Write an algorithm to find average of three numbers

 Step1: Initialize a, b, c, d to zero

 Step2: Read a, b, c

Definition, Description characteristics and Advantages of Algorithms1.5

Introduction to Problem Solving Techniques

Computer Science 7

 Step3: d= a+b+c/3

 Step4: print ‘average is’ d

 Step5: stop

Note: In order to solve a given problem, each and every instruction must be strictly carried

out in a particular sequence.

The algorithm translates a method into computer commands.

Algorithms are essential to the way computers process information, because a computer

program is essentially an algorithm that tells the computer what specific steps to perform (in what

specific order) in order to carry out a specified task, such as calculating employees’ paychecks

or printing students’ report cards. Thus, an algorithm can be considered to be any sequence of

operations which can be performed by a Turing-complete system.

Typically, when an algorithm is associated with processing information, data is read from

an input source or device, written to an output sink or device, and/or stored for further processing.

Stored data is regarded as part of the internal state of the entity performing the algorithm. In

practice, the state is stored in a data structure.

For any such computational process, the algorithm must be rigorously defined: specified

in the way it applies in all possible circumstances that could arise. That is, any conditional steps

must be systematically dealt with, case-by-case; the criteria for each case must be clear (and

computable).

Because an algorithm is a precise list of precise steps, the order of computation will almost

always be critical to the functioning of the algorithm. Instructions are usually assumed to be listed

explicitly, and are described as starting ‘from the top’ and going ‘down to the bottom’, an idea

that is described more formally by flow of control.

1.6.1 Description of a Flow Chart

A flowchart is a diagrammatic representation that illustrates the sequence of operations

to be performed to get the solution of a problem. Flowcharts are generally drawn in the early

stages of formulating computer solutions. Flowcharts facilitate communication between

programmers and business people. These flowcharts play a vital role in the programming of a

Description of Flow Charts and Standard shapes that are
used in Flow Charts

1.6

Introduction to Problem Solving Techniques

8 Computer Science

problem and are quite helpful in understanding the logic of complicated and lengthy problems.

Once the flowchart is drawn, it becomes easy to write the program in any high level language.

Often we see how flowcharts are helpful in explaining the program to others. Hence, it is correct

to say that a flowchart is a must for the better documentation of a complex program.

A standard convention is used in drawing flowcharts. In this standard convention the

following shapes are used for various blocks in the flowcharts.

1.6.2 Flowchart Symbols / Shapes

Introduction to Problem Solving Techniques

Computer Science 9

1.6.2.1 Terminals: The terminal symbol, as the name implies, is used to indicate the
beginning (START), ending (STOP) and pause (HALT) in the program logic flow.
It is the first symbol and the last symbol in the program logic. If the program logic
call for a pause in the program, that also is indicated with the terminal symbol.

1.6.2.2 Input/Output: - The input/output symbol is used to denote any function of an input/
output device in the program.

1.6.2.3 Processing - A processing symbol is used in a flowchart to represent arithmetic and
data movement instructions. Thus, all arithmetic process of adding, subtracting,
multiplying and dividing are shown by a processing symbol.

1.6.2.4 Flowlines: - Flowlines with arrowheads are used to indicate the flow of operation,
that is, exact sequence in which the instructions are to be executed.

1.6.2.5 Decision: - The decision symbol is used in a flowchart to indicate a point at which
a decision has to be made and a branch to two or more alternative points is possible.

1.6.2.6 Display division by checking the condition using flowchart

Introduction to Problem Solving Techniques

10 Computer Science

1.6.2.7 Programming analysis using Flowcharts: The next step is to express the flowchart
in a more precise and concise notation called a programming language. A computer
program corresponding to flowchart is written in any programming language like
pascal, c, etc.

 1.6.2.8 Guidelines in Flow Charting

The following are some guidelines in flowcharting:

a. In drawing a proper flowchart, all necessary requirements should be listed out in logical

order.

b. The flowchart should be clear, neat and easy to follow. There should not be any room

for ambiguity in understanding the flowchart.

c. The usual direction of the flow of a procedure or system is from left to right or top to

bottom.

d. Only one flow line should come out from a process symbol.

e. Only one flow line should enter a decision symbol, but two or three flow lines, one for

each possible answer, should leave the decision symbol.

f. Only one flow line is used in conjunction with terminal symbol.

Introduction to Problem Solving Techniques

Computer Science 11

g. Write within standard symbols briefly. As necessary, you can use the annotation symbol

to describe data or computational steps more clearly.

h. If the flowchart becomes complex, it is better to use connector symbols to reduce the

number of flow lines. Avoid the intersection of flow lines if you want to make it more

effective and better way of communication.

i. Ensure that the flowchart has a logical start and finish.

j. It is useful to test the validity of the flowchart by passing through it with a simple test

data.

 1.6.2.9 Advantages of Using Flow Charts

The benefits of flowcharts are as follows:

1. Communication: Flowcharts are better way of communicating the logic of a system to

all concerned.

2. Effective analysis: With the help of flowchart, problem can be analysed in more effective

way.

3. Proper documentation: Program flowcharts serve as a good program documentation, which

is needed for various purposes.

4. Efficient Coding: The flowcharts act as a guide or blueprint during the systems analysis

and program development phase.

5. Proper Debugging: The flowchart helps in debugging process.

6. Efficient Program Maintenance: The maintenance of operating program becomes easy

with the help of flowchart. It helps the programmer to put efforts more efficiently on that

part

1.6.2.10 Limitations of Using Flow Charts

1. Complex logic: Sometimes, the program logic is quite complicated. In that case, flowchart

becomes complex and clumsy.

Introduction to Problem Solving Techniques

12 Computer Science

2. Alterations and Modifications: If alterations are required the flowchart may require re-

drawing completely.

3. Reproduction: As the flowchart symbols cannot be typed, reproduction of flowchart

becomes a problem.

4. The essentials of what is done can easily be lost in the technical details of how it is done.

1.7 Summary

In this lesson, we have learned that Procedures consist of a finite number of discrete steps
each of which is comprised of a rule, or an instruction or operation that can be applied, performed
or executed by the device or agent that is expected to carry out the procedure.

Procedures may be devised that build or change things in the real world.We have also
covered the basic definition of pseudocode that pseudocode is a kind of structured english for
describing algorithms.It allows the designer to focus on the logic of the algorithm without being
distracted by details of language syntax.The pseudocode needs to be complete. It describe the
entire logic of the algorithm .

we have discussed the advantages and limitation of flowcharting. A flowchart is a pictorial
representation of an algorithm that uses different shapes to denote different types of instructions.
Flowchart is prepared from the algorithm. The flowchart is expressed in some programming
language to prepare a computer program. The sequence of instructions and repetition of group
of instructions may be quickly seen by inspecting a flowchart. Flowchart is primarily used as
an aid in formulating and understanding algorithms.We have also shown some examples of
flowcharting. This will help the students in learning this technique easily.

1.8 Terminal Questions

Essay type questions

1. Write a procedure to compare two values and find which is greater?

2. What are the rules for writing pseudocode?

3. Write an algorithm for finding the largest of three numbers?

4. Draw a flowchart to read a number N and print all its divisors?

5. Draw a flowchart for computing the sum of the digits of any given number ?

6. Draw a flowchart to find the sum of given N numbers.?

Introduction to Problem Solving Techniques

Computer Science 13

7. Draw a flowchart to computer the sum of squares of integers from 1 to 50?

8. Draw a flowchart to arrange the given data in an ascending order?

Short type questions

 1.What is a procedure?

 2.What is an algorithm?

 3.What do you mean by pseudocode?

 4.What are the symbols for flowchart?

 5.define flowchart?

Fill in the blanks :

1) A program flowchart indicates the_________ to be performed and the __________

in which they occur.

2) A program flowchart is generally read from _____________ to ________________

3) Flowcharting symbols are connected together by means of ___________________

4) A decision symbol may be used in determining the ____________ or ___________

of two data items.

5) __________ are used to join remote portions of a flowchart

6) ____________ connectors are used when a flowchart ends on one page and begins

again on other page

7) A ________ symbol in used at the beginning and end of a flowchart.

8) The flowchart is one of the best ways of ________ a program..

9) To construct a flowchart, one must adhere to prescribed symbols provided by the

__________ .

10) The programm uses a ____________ to aid him in drawing flowchart symbols.

Introduction to 'C' Programming

14 Computer Science

2
Introduction to 'C' Programming

Learning Objectives2.1

• C & its basic characteristics

• create and execute simple C programs

• use the simplest functions for input and output.

• declare, define and compute the values of program variables via simple arithmetic operation

• state what the data types are, and what their ranges, how they are declared and how they
are used

• the various kinds of operators, more importantly increment & decrement operators, special
operators

• learn about the order of precedence among operators

• write and evaluate C expressions

• different type coversions in expressions namely implicit,explicit

In this lesson you will learn about C Programming Lanuage, Basic features of C, Sample

program - Printing a message, Executing a C Program and Basic structure of C programs,

Character Set, Special Characters, White Space, Keywords and Identifiers, Constants and

Variables, data types, Primary data type, Integer Type, Floating Point Types, Void Type,

Character Type, Size and Range of Data Types on 16 bit machine, derived data type, Declaration

Introduction2.2

Introduction to 'C' Programming

Computer Science 15

of Variables, User defined type declaration, Declaration of Storage Class, auto, static, extern,

register, Defining Symbolic Constants, Declaring Variable as Constant ,operators, its kinds,

expressions & type conversions in expressions

C is a programming language. It is most popular computer language today because it

is a structured high level, machine independent language. Programmers need not worry about

the hardware platform where they will be implemented.

Dennis Ritchie invented C language. Ken Thompson created a language which was based

upon a language known as BCPL and it was called as B. B language was created in 1970,

basically for UNIX operating system Dennis Ritchie used ALGOL, BCPL and B as the basic

reference language from which he created C.

C has many qualities which any programmer may desire. It contains the capability of

assembly language with the features of high level language which can be used for creating software

packages, system software etc. It supports the programmer with a rich set of built-in functions

and operators. C is highly portable. C programs written on one computer can run on other

computer without making any changes in the program. Structured programming concept is well

supported in C, this helps in dividing the programs into function modules or code blocks.

A C program is a set of functions and the program execution begins by executing the

function main. Here you will write the first C program.

2.3.1 Sample

Printing

Consider the following message

1. #include <stdio.h>

2. int main()

3. {

4. /* Printing begins here */

5. printf (“C is a very good programming language.”);

6. /* Printing ends here */

7. }

Overview of C2.3

Introduction to 'C' Programming

16 Computer Science

The first line is a preprocessor command which adds the stdio.h header file into our

program. Actually stdio stands for standard input and output, this header file supports the input-

output functions in a program.

In a program, we need to provide input data and display processed data on standard output

– Screen. The stdio.h header file supports these two activities. There are many header files.

The second line int main() tells the compiler that it is the starting point of the program,

every program should essentially have the main function only once in the program. The opening

and closing braces indicates the beginning and ending of the program. All the statements between

these two braces form the function body. These statements are actually the C code which tells

the computer to do something. Each statement is an instruction for the computer to perform

specific task.

The statement placed between the pair, /* */ is a comment and will not be executed,

the compiler simply ignores this statement. These are essential since it enhances the readability

and understandability of the program. It is a very good practice to include comments in all the

programs to make the users understand what is being done in the program.

The fifth statement is a printf statement which is a function defined in stdio.h file and

it prints the contents passed in pair of “”.

Instructions in C language are formed using syntax and keywords. It is necessary to strictly

follow C language Syntax rules. Any instruction that mis-matches with C language Syntax

generates an error while compiling the program. All programs must confirm to rules pre-defined

in C Language. Keywords as special words which are exclusively used by C language, each

keyword has its own meaning and relevance hence, Keywords should not be used either as

Variable or Constant names.

2.3.2 Character Set

The character set in C Language can be grouped into the following categories.

1. Letters

2. Digits

3. Special Characters

4. White Spaces

Introduction to 'C' Programming

Computer Science 17

White Spaces are ignored by the compiler until they are a part of string constant. White

Space may be used to separate words, but are strictly prohibited while using between characters

of keywords or identifiers.

2.3.3 Keywords and Identifiers

Every word in C language is a keyword or an identifier. Keywords in C language cannot

be used as a variable name. They are specifically used by the compiler for its own purpose and

they serve as building blocks of a c program.

The following are the Keyword set of C language.

some compilers may have additional keywords listed in C manual.

Identifiers refers to the name of user-defined variables, array and functions. A variable

should be essentially a sequence of letters and or digits and the variable name should begin with

a character.

Both uppercase and lowercase letters are permitted. The underscore character is also

permitted in identifiers.

Example: a1, total, area ….etc.

Note : keywords cannot be used as identifiers or function names.

The identifiers must conform to the following rules.

1. First character must be an alphabet (or underscore)

2. Identifier names must consists of only letters, digits and underscore.

3. A identifier name should have less than 31 characters.

4. A identifier should not contain a space.

auto else register union
break enum return unsigned
case extern short void
char float signed volatile
const for size of while
continue goto static
default if struct
do int switch
double long typedef

Introduction to 'C' Programming

18 Computer Science

2.3.4 Constants

A constant value is the one which does not change during the execution of a program.

C supports several types of constants.

1. Integer Constants

2. Real Constants

3 Single Character Constants

4 String Constants

5 Backslash Character Constants

2.3.4.1 Integer Constants

An integer constant is a sequence of digits. There are 3 types of integers namely decimal

integer, octal integers and hexadecimal integer.

(i) Decimal Integers consists of a set of digits 0 to 9 preceded by an optional + or - sign. Spaces,

commas and non digit characters are not permitted between digits. Example for valid decimal

integer constants are

123

-31

0

562321

+ 78

Some examples for invalid integer constants are

15

20,000

Rs. 1000

(ii) Octal Integers constant consists of any combination of digits from 0 through 7 with a O

at the beginning. Some examples of octal integers are

O26

O

O347

O676

Introduction to 'C' Programming

Computer Science 19

(iii) Hexadecimal integer constant is preceded by OX or Ox, they may contain alphabets from

A to F or a to f. The alphabets A to F refers to 10 to 15 in decimal digits. Example of valid

hexadecimal integers are

OX2

OX8C

OXbcd

Ox

V

2.3.4.2 Real Constants

Real Constants consists of a fractional part in their representation. Integer constants are

inadequate to represent quantities that vary continuously. These quantities are represented by

numbers containing fractional parts like 26.082. Example of real constants are

0.0026

-0.97

435.29

+487.0

Real Numbers can also be represented by exponential notation. The general form for

exponential notation is mantissa exponent. The mantissa is either a real number expressed in

decimal notation or an integer. The exponent is an integer number with an optional plus or minus

sign.

2.3.4.3 Single Character Constants

A Single Character constant represents a single character which is enclosed in a pair of

quotation symbols.

Example for character constants are

‘5’

‘x’

‘;’

Introduction to 'C' Programming

20 Computer Science

All character constants have an equivalent integer value which are called ASCII Values.

2.3.4.4 String Constants

A string constant is a set of characters enclosed in double quotation marks. The characters

in a string constant sequence may be an alphabet, number, special character and blank space.

Example of string constants are

“VISHAL”

“1234”

“God Bless”

“!.....?”

2.3.4.5 Backslash Character Constants [Escape Sequences]

Backslash character constants are special characters used in output functions. Although

they contain two characters they represent only one character. Given below is the table of escape

sequence and their meanings.

2.3.5 Variables

A variable is a value that can change any time. It is a memory location used to store

a data value. A variable name should be carefully chosen by the programmer so that its use is

reflected in a useful way in the entire program. Variable names are case sensitive. Example of

variable names are

Sun

number

Salary

Emp_name

ConstantMeaning
'\a' .Audible Alert (Bell) '\t' .Horizontal tab
'\b' .Backspace '\v' .Vertical Tab
'\f' .Formfeed '\'' .Single Quote
'\n' .New Line '\"'.Double Quote
'\r' .Carriage Return '\?' .Question Mark
'\0' .Null '\\' .Back Slash

Introduction to 'C' Programming

Computer Science 21

average1

Any variable declared in a program should confirm to the following

1. They must always begin with a letter, although some systems permit underscore as the
first character.

2. The length of a variable must not be more than 8 characters.

3. White space is not allowed and

4. A variable should not be a Keyword

5. It should not contain any special characters.

Examples of Invalid Variable names are

123 /* variable name cannot be numeric */

(area) /* special characters are not allowed */

6th /* variable name cannot start with digit. */

%abc /* special characters are not allowed */

2.3.6 Data Types

A C language programmer has to tell the system before-hand, the type of numbers or

characters he is using in his program. These are data types. There are many data types in C

language. A C programmer has to use appropriate data type as per his requirement.

C language data types can be broadly classified as

 primary data type

 Derived data type

 User defined data type

2.3.6.1 Primary data type

All C Compilers accept the following fundamental data types

1. Integer int

2. Character char

3. Floating Point float

4. Double precision floating point double

5. Void void

Introduction to 'C' Programming

22 Computer Science

The size and range of each data type is given in the table below

2.3.6.2 Integer Type :

Integers are whole numbers with a machine dependent range of values. C has 3 classes

of integer storage namely short int, int and long int. All of these data types have signed and

unsigned forms. A short int requires half the space than normal integer values. Unsigned numbers

are always positive and consume all the bits for the magnitude of the number. The long and

unsigned integers are used to declare a longer range of values.

2.3.6.3 Floating Point Types :

Floating point number represents a real number with 6 digits precision. Floating point

numbers are denoted by the keyword float. When the accuracy of the floating point number is

insufficient, we can use the double to define the number. The double is same as float but with

longer precision. To extend the precision further we can use long double which consumes 80

bits of memory space.

2.3.6.4 Void Type :

Using void data type, we can specify the type of a function. It is a good practice to avoid

functions that does not return any values to the calling function.

2.3.6.5 Character Type :

A single character can be defined as a character type of data. Characters are usually stored

in 8 bits of internal storage. The qualifier signed or unsigned can be explicitly applied to char.

While unsigned characters have values between 0 and 255, signed characters have values from

–128 to 127.

ConstantMeaning
'\a' .Audible Alert (Bell) '\t' .Horizontal tab
'\b' .Backspace '\v' .Vertical Tab
'\f' .Formfeed '\'' .Single Quote
'\n' .New Line '\"'.Double Quote
'\r' .Carriage Return '\?' .Question Mark
'\0' .Null '\\' .Back Slash

Introduction to 'C' Programming

Computer Science 23

Size and Range of Data Types on 16 bit machine.

type SIZE (Bits) Range

Char or Signed Char 8 -128 to 127

Unsigned Char 8 0 to 255

Int or Signed int 16 -32768 to 32767

Unsigned int 16 0 to 65535

Short int or Signed short int 8 -128 to 127

Unsigned short int 8 0 to 255

Long int or signed long int 32 -2147483648 to 2147483647

Unsigned long int 32 0 to 4294967295

Float 32 3.4 e-38 to 3.4 e+38

Double 64 1.7e-308 to 1.7e+308

Long Double 80 3.4 e-4932 to 3.4 e+4932

2.3.7 Declaration of Variables

Every variable used in the program should be declared to the compiler. The declaration

does two things.

1. Tells the compiler the variables name.

2. Specifies what type of data the variable will hold.

The general format of any declaration

datatype v1, v2, v3, ……….. vn;

Where v1, v2, v3 are variable names. Variables are separated by commas. A declaration statement

must end with a semicolon.

Example: Int sum;

Introduction to 'C' Programming

24 Computer Science

Datatype Keyword Equivalent

Character char

Unsigned Character unsigned char

Signed Character signed char

Signed Integer signed int (or) int

Signed Short Integer signed short int (or) short int (or) short

Signed Long Integer signed long int (or) long int (or) long

UnSigned Integer unsigned int (or) unsigned

UnSigned Short Integer unsigned short int (or) unsigned short

UnSigned Long Integer unsigned long int (or) unsigned long

Floating Point float

Double Precision Floating Point double

Extended Double Precision Floating Point long double

2.3.7.1 User defined type declaration

In C language a user can define an identifier that represents an existing data type. The

user defined datatype identifier can later be used to declare variables. The general syntax is

Typedef type identifier;

here type represents existing data type and ‘identifier’ refers to the ‘row’ name given to the data

type.

Example:

typedef int salary;

typedef float average;

Here salary symbolizes int and average symbolizes float. They can be later used to declare

variables as follows:

Units dept1, dept2;

Average section1, section2;

Therefore dept1 and dept2 are indirectly declared as integer datatype and section1 and section2

are indirectly float data type.

The second type of user defined datatype is enumerated data type which is defined as follows.

Introduction to 'C' Programming

Computer Science 25

Enum identifier {value1, value2 …. Value n};

The identifier is a user defined enumerated datatype which can be used to declare variables that

have one of the values enclosed within the braces. After the definition we can declare variables

to be of this ‘new’ type as below.

enum identifier V1, V2, V3, ……… Vn

The enumerated variables V1, V2, ….. Vn can have only one of the values value1, value2 …..

value n

Example:

enum day {Monday, Tuesday, …. Sunday};

enum day week_st, week end;

week_st = Monday;

week_end = Friday;

if(wk_st == Tuesday)

week_en = Saturday;

2.3.8 Operators

An operator is a symbol which helps the user to command the computer to do a certain

mathematical or logical manipulations. Operators are used in C language program to operate on

data and variables. C has a rich set of operators which can be classified as

1. Arithmetic operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Increments and Decrement Operators

6. Conditional Operators

7. Bitwise Operators

8. Special Operators

2.3.8.1 Arithmetic Operators

All the basic arithmetic operations can be carried out in C. All the operators have almost

the same meaning as in other languages. Both unary and binary operations are available in C

language. Unary operations operate on a singe operand, therefore the number 5 when operated

by unary – will have the value –5.

Introduction to 'C' Programming

26 Computer Science

Arithmetic Operators

Examples of arithmetic operators are

x + y

x - y

-x + y

a * b + c

-a * b

here a, b, c, x, y are known as operands. The modulus operator is a special operator in C language

which evaluates the remainder of the operands after division.

Example

Operator Meaning
+ Addition or Unary Plus

– Subtraction or Unary Minus

* Multiplication

/ Division

% Modulus Operator

.
#include //include header file stdio.h
void main() //tell the compiler the start of the program
{
 int numb1, num2, sum, sub, mul, div, mod; //declaration of variables
 scanf (“%d %d”, &num1, &num2); //inputs the operands

 sum = num1+num2; //addition of numbers and storing in sum.
 printf(“\n Thu sum is = %d”, sum); //display the output

 sub = num1-num2; //subtraction of numbers and storing in sub.
 printf(“\n Thu difference is = %d”, sub); //display the output

 mul = num1*num2; //multiplication of numbers and storing in mul.
 printf(“\n Thu product is = %d”, mul); //display the output

 div = num1/num2; //division of numbers and storing in div.
 printf(“\n Thu division is = %d”, div); //display the output

 mod = num1%num2; //modulus of numbers and storing in mod.
 printf(“\n Thu modulus is = %d”, mod); //display the output
}
.

Introduction to 'C' Programming

Computer Science 27

2.3.8.1.1 Integer Arithmetic

When an arithmetic operation is performed on two whole numbers or integers than such

an operation is called as integer arithmetic. It always gives an integer as the result. Let x = 27

and y = 5 be 2 integer numbers. Then the integer operation leads to the following results.

x + y = 32

x – y = 22

x * y = 115

x % y = 2

x / y = 5

In integer division the fractional part is truncated.

2.3.8.1.2 Floating point arithmetic

When an arithmetic operation is preformed on two real numbers or fraction numbers such

an operation is called floating point arithmetic. The floating point results can be truncated

according to the properties requirement. The remainder operator is not applicable for floating

point arithmetic operands.

Let x = 14.0 and y = 4.0 then

x + y = 18.0

x – y = 10.0

x * y = 56.0

x / y = 3.50

2.3.8.1.3 Mixed mode arithmetic

When one of the operand is real and other is an integer and if the arithmetic operation

is carried out on these 2 operands then it is called as mixed mode arithmetic. If any one operand

is of real type then the result will always be real thus 15/10.0 = 1.5

Introduction to 'C' Programming

28 Computer Science

2.3.8.2 Relational Operators

Often it is required to compare the relationship between operands and bring out a decision

and program accordingly. This is when the relational operator come into picture. C supports the

following relational operators.

Operator Meaning

It is required to compare the marks of 2 students, salary of 2 persons, we can compare

them using relational operators.

A simple relational expression contains only one relational operator and takes the following form.

exp1 relational operator exp2

Where exp1 and exp2 are expressions, which may be simple constants, variables or combination

of them. Given below is a list of examples of relational expressions and evaluated values.

6.5 <= 25 TRUE

-65 > 0 FALSE

10 < 7 + 5 TRUE

Relational expressions are used in decision making statements of C language such as if,

while and for statements to decide the course of action of a running program.

2.3.8.3 Logical Operators

C has the following logical operators, they compare or evaluate logical and relational expressions.

Operator Meaning
< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== is equal to

!= is not equal to

Operator Meaning
&& Logical AND

|| Logical OR

! Logical NOT

Introduction to 'C' Programming

Computer Science 29

Logical AND (&&)

This operator is used to evaluate 2 conditions or expressions with relational operators

simultaneously. If both the expressions to the left and to the right of the logical operator is true

then the whole compound expression is true.

Example

a > b && x = = 10

The expression to the left is a > b and that on the right is x == 10 the whole expression is true

only if both expressions are true i.e., if a is greater than b and x is equal to 10.

Logical OR (||)

The logical OR is used to combine 2 expressions or the condition evaluates to true if any one

of the 2 expressions is true.

Example

a < m || a < n

The expression evaluates to true if any one of them is true or if both of them are true.

It evaluates to true if a is less than either m or n and when a is less than both m and n.

Logical NOT (!)

The logical not operator takes single expression and evaluates to true if the expression

is false and evaluates to false if the expression is true. In other words it just reverses the value

of the expression.

For example

! (x >= y) the NOT expression evaluates to true only if the value of x is neither greater than

or equal to y

2.3.8.4 Assignment Operators

The Assignment Operator evaluates an expression on the right of the expression and substitutes

it to the value or variable on the left of the expression.

Example

x = a + b

Here the value of a + b is evaluated and substituted to the variable x.

In addition, C has a set of shorthand assignment operators of the form.

Introduction to 'C' Programming

30 Computer Science

var oper = exp;

Here var is a variable, exp is an expression and oper is a C binary arithmetic operator. The operator

oper = is known as shorthand assignment operator

Example

x + = 1 is same as x = x + 1

The commonly used shorthand assignment operators are as follows

Shorthand assignment operators

Example for using shorthand assignment operator

Output
2

4

16

Statement with simple
assignment operator

Statement with
shorthand operator

a = a + 1 a += 1

a = a – 1 a -= 1

a = a * (n+1) a *= (n+1)

a = a / (n+1) a /= (n+1)

a = a % b a %= b

.
#define N 100 //creates a variable N with constant value 100
#define A 2 //creates a variable A with constant value 2

main() //start of the program
{
 int a; //variable a declaration
 a = A; //assigns value 2 to a

 while (a < N) //while value of a is less than N
 { //evaluate or do the following
 printf(“%d \n”,a); //print the current value of a
 a *= a; //shorthand form of a = a * a
 } //end of the loop
} //end of the program
.

Introduction to 'C' Programming

Computer Science 31

2.3.8.5 Increment and Decrement Operators

The increment and decrement operators are one of the unary operators which are very useful

in C language. They are extensively used in for and while loops. The syntax of the operators

is given below

1. ++ variable name

2. variable name++

3. – –variable name

4. variable name– –

The increment operator ++ adds the value 1 to the current value of operand and the decrement

operator – – subtracts the value 1 from the current value of operand. ++variable name and variable

name++ mean the same thing when they form statements independently, they behave differently

when they are used in expression on the right hand side of an assignment statement.

 Consider the following

m = 5;

y = ++m; (prefix)

In this case the value of y and m would be 6

Suppose if we rewrite the above statement as

m = 5;

y = m++; (post fix)

Then the value of y will be 5 and that of m will be 6. A prefix operator first adds 1 to the operand

and then the result is assigned to the variable on the left. On the other hand, a postfix operator

first assigns the value to the variable on the left and then increments the operand.

2.3.8.6 Conditional or Ternary Operator

The conditional operator consists of 2 symbols the question mark (?) and the colon (:)

The syntax for a ternary operator is as follows

exp1 ? exp2 : exp3

The ternary operator works as follows

Introduction to 'C' Programming

32 Computer Science

exp1 is evaluated first. If the expression is true then exp2 is evaluated & its value becomes the

value of the expression. If exp1 is false, exp3 is evaluated and its value becomes the value of

the expression. Note that only one of the expression is evaluated.

For example

a = 10;

b = 15;

x = (a > b) ? a : b

Here x will be assigned to the value of b. The condition follows that the expression is false

therefore b is assigned to x.

Output

Input 2 integers : 34 45

The largest of two numbers is 45

2.3.8.7 Bitwise Operators

C has a distinction of supporting special operators known as bitwise operators for

manipulation data at bit level. A bitwise operator operates on each bit of data. Those operators

are used for testing, complementing or shifting bits to the right on left. Bitwise operators may

not be applied to a float or double.

.
/* Example : to find the maximum value using conditional operator)
#include
void main() //start of the program
{
int i,j,larger; //declaration of variables
printf (“Input 2 integers : ”); //ask the user to input 2 numbers
scanf(“%d %d”,&i, &j); //take the number from standard input and store it
larger = i > j ? i : j; //evaluation using ternary operator
printf(“The largest of two numbers is %d \n”, larger); // print the largest number
} // end of the program
.

Introduction to 'C' Programming

Computer Science 33

2.3.8.8 Special Operators

C supports some special operators of interest such as comma operator, size of operator,

pointer operators (& and *) and member selection operators (. and ->). The size of and the comma

operators are discussed here. The remaining operators are discussed in forth coming chapters.

2.3.8.8.1 The Comma Operator

The comma operator can be used to link related expressions together. A comma-linked

list of expressions are evaluated left to right and value of right most expression is the value of

the combined expression.

For example the statement

value = (x = 10, y = 5, x + y);

First assigns 10 to x and 5 to y and finally assigns 15 to value. Since comma has the lowest

precedence in operators the parenthesis is necessary. Some examples of comma operator are

In for loops:

for (n=1, m=10, n <=m; n++, m++)

In while loops

While (c=getchar(), c != ‘10’)

Exchanging values

t = x, x = y, y = t;

2.3.8.8.2 The size of Operator

The operator size of gives the size of the data type or variable in terms of bytes occupied in

the memory. The operand may be a variable, a constant or a data type qualifier.

Example

m = sizeof (sum);

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive

<< Shift left

>> Shift right

Introduction to 'C' Programming

34 Computer Science

n = sizeof (long int);

k = sizeof (235L);

The size of operator is normally used to determine the lengths of arrays and structures when

their sizes are not known to the programmer. It is also used to allocate memory space dynamically

to variables during the execution of the program.

Example program that employs different kinds of operators. The results of their evaluation are

also shown in comparision

Notice the way the increment operator ++ works when used in an expression. In the statement

c = ++a – b; new value a = 16 is used thus giving value 6 to C. That is a is incremented by

1 before using in expression.

However in the statement d = b++ + a; The old value b = 10 is used in the expression. Here

b is incremented after it is used in the expression.

We can print the character % by placing it immediately after another % character in the control

string. This is illustrated by the statement.

printf(“a %% b = %d\n”, a%b);

This program also illustrates that the expression

c > d ? 1 : 0

Assumes the value 0 when c is less than d and 1 when c is greater than d.

.
main() //start of program
{
int a, b, c, d; //declaration of variables
a = 15; b = 10; c = ++a-b; //assign values to variables
printf (“a = %d, b = %d, c = %d\n”, a,b,c); //print the values
d=b++ + a;
printf (“a = %d, b = %d, d = %d\n, a,b,d);
printf (“a / b = %d\n, a / b);
printf (“a %% b = %d\n, a % b);
printf (“a *= b = %d\n, a *= b);
printf (“%d\n, (c > d) ? 1 : 0);
printf (“%d\n, (c < d) ? 1 : 0);
}
.

Introduction to 'C' Programming

Computer Science 35

2.3.9 Arithmetic Expressions

An expression is a combination of variables constants and operators written according to the

syntax of C language. In C every expression evaluates to a value i.e., every expression results

in some value of a certain type that can be assigned to a variable. Some examples of C expressions

are shown in the table given below.

2.3.9.1 Evaluation of Expressions

Expressions are evaluated using an assignment statement of the form

Variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is

evaluated first and then replaces the previous value of the variable on the left hand side. All

variables used in the expression must be assigned values before evaluation is attempted.

Example of evaluation statements are

x = a * b – c

y = b / c * a

z = a – b / c + d;

The following program illustrates the effect of presence of parenthesis in expressions:

main ()

{

float a, b, c x, y, z;

a = 9;

b = 12;

c = 3;

Algebraic
Expression

C Expression

a x b – c a * b – c

(m + n) (x + y) (m + n) * (x +
y)

(ab / c) a * b / c

3x2 +2x + 1 3*x*x+2*x+1

(x / y) + c x / y + c

Introduction to 'C' Programming

36 Computer Science

x = a – b / 3 + c * 2 – 1;

y = a – b / (3 + c) * (2 – 1);

z = a – (b / (3 + c) * 2) – 1;

printf (“x = %fn”,x);

printf (“y = %fn”,y);

printf (“z = %fn”,z);

}

 output

x = 10.00

y = 7.00

z = 4.00

2.3.9.2 Precedence in Arithmetic Operators

An arithmetic expression without parenthesis will be evaluated from left to right using the rules

of precedence of operators. There are two distinct priority levels of arithmetic operators in C.

High priority * / %

Low priority + -

2.3.9.3 Rules for evaluation of expression

• First parenthesized sub expression left to right are evaluated.

• If parenthesis are nested, the evaluation begins with the innermost sub expression.

• The precedence rule is applied in determining the order of application of operators in

evaluating sub expressions.

• The associability rule is applied when two or more operators of the same precedence

level appear in the sub expression.

• Arithmetic expressions are evaluated from left to right using the rules of precedence.

• When Parenthesis are used, the expressions within parenthesis assume highest priority.

Introduction to 'C' Programming

Computer Science 37

2.3.9.4 Type conversions in expressions

2.3.9.4.1 Implicit type conversion

C permits mixing of constants and variables of different types in an expression. C

automatically converts any intermediate values to the proper type so that the expression can be

evaluated without loosing any significance. This automatic type conversion is know as implicit

type conversion During evaluation it adheres to very strict rules and type conversion. If the

operands are of different types the lower type is automatically converted to the higher type before

the operation proceeds. The result is of higher type.

The following rules apply during evaluating expressions

All short and char are automatically converted to int then

1. If one operand is long double, the other will be converted to long double and result will
be long double.

2. If one operand is double, the other will be converted to double and result will be double.

3. If one operand is float, the other will be converted to float and result will be float.

4. If one of the operand is unsigned long int, the other will be converted into unsigned long
int and result will be unsigned long int.

5. If one operand is long int and other is unsigned int then

a. If unsigned int can be converted to long int, then unsigned int operand will be
converted as such and the result will be long int.

b. Else Both operands will be converted to unsigned long int and the result will be
unsigned long int.

6. If one of the operand is long int, the other will be converted to long int and the result
will be long int. .

7. If one operand is unsigned int the other will be converted to unsigned int and the result
will be unsigned int.

2.3.9.4.2 Explicit Conversion

Many times there may arise a situation where we want to force a type conversion in a

way that is different from automatic conversion.

Consider for example the calculation of number of female and male students in a class

Introduction to 'C' Programming

38 Computer Science

 female_students

Ratio = —————————

 male_students

Since if female_students and male_students are declared as integers, the decimal part will

be rounded off and its ratio will represent a wrong figure. This problem can be solved by

converting locally one of the variables to the floating point as shown below.

Ratio = (float) female_students / male_students

The operator float converts the female_students to floating point for the purpose of

evaluation of the expression. Then using the rule of automatic conversion, the division is

performed by floating point mode, thus retaining the fractional part of the result. The process

of such a local conversion is known as explicit conversion or casting a value. The general form

is

(type_name) expression

2.3.9.5 Operator precedence and associativity

Each operator in C has a precedence associated with it. The precedence is used to

determine how an expression involving more than one operator is evaluated. There are distinct

levels of precedence and an operator may belong to one of these levels. The operators of higher

precedence are evaluated first.

The operators of same precedence are evaluated from right to left or from left to right

depending on the level. This is known as associativity property of an operator.

In this unit we presented introduction of the C programming language,

The following important terms were presented: main (), #include <stdio.h. We also saw

how printf () prints strings.

We saw how the fundamental data types of C were declared through the seven keywords:

int, long, short, unsigned, char, float and double

We have learnt that key words cannot be used as variable names & that the length of

a maximum 31 characters.

Variables, constants & its types, expressions, Rules for evaluation of expression, Type

conversions in expressions

Summary2.4

Introduction to 'C' Programming

Computer Science 39

The maximum value a variable can hold depends upon the number of bytes it occupies

in memory.

By default all the variables are signed. We can declare a variable as unsigned to

accommodate greater value without increasing the bytes occupied

Also you have seen that an expression may contain any sequence of constants, variables

& operators & that the operators having equal precedence are evaluated using associativity.

Implicit type conversion, Explicit Conversion

Different kinds of operators, their usage, precedence etc were covered

Very Short answer questions

1. What are the general characteristics of C?

2. Where was C originally developed and by whom?

3. What are the major components of a C program? What significance is attached to the

name main?

4. What is an operator? Describe several different types of operators included in C?

5. Summarize the rules that apply to expressions whose operands are of different types?

6. Describe the 4 relational operators in C? With what type of operands can they be used?

What type of expressions is obtained?

Short answer questions

1. What would be the output of the following program:

 i) main ()

{

 Float a=5, b=2;

 Int c:

 c= a%b;

printf(“%”d”, c);

}

Terminal Questions2.5

Introduction to 'C' Programming

40 Computer Science

 ii) main ()

{

 Int i=2, j=3, k,l;

Float a,b;

k = i/j*j;

l = j/i*I;

a= i/j*j

b=j/i*i

printf(“%d%d%f%f,k,l,a.b);

2. Outline the hierarchy of arithmetic operators in C

3. write a C program to convert temperature of a city in Fahrenheit degrees into Centigrade

degrees.

4. Determine the hierarchy of operations & evauate the following expression

 Kk=3 / 2 * 4 + 3 / 8 + 3.

Fill in the blanks

1. In 1972, C was developed at Bell Laboratories by _____________.

2. C is a simple _____________ with a relatively simple to understand syntax and few

keywords.

3. C is also called as a _____________.

4. Every word in C language is a _____________ or an _____________.

5. C requires a _____________ at the end of the every statement.

6. C has a rich set of _____________.

7. C has _____________ number of keywords.

C Programming Language

Computer Science 41

3
Input/Output Operations and Control Constructs

Learning Objectives3.1

• Console I/O

• Basic I/O functions like getchar,putchar

• Format specifiers

• Formatted I/O functions like printf & scanf

• Control statements or constructs

i) conditional statements—if

ii) looping constructs— while, do-while, for

iii) continue , break, goto

iv) switch

In this lesson you will learn about Single character input output, String input and output,

Formatted Input For Scanf, Input specifications for real number, Input specifications for a

character, Printing One Line, Conversion Strings and Specifiers, control constructs looping &

branching constructs. Looping : The While Statement, The Do while statement, The Break

Statement, Continue statement and For Loop. Branching: if Statement, The If else construct,

Compound Relational tests, Nested if Statement, The ELSE If Ladder, The Switch Statement

and The GOTO statement.

Introduction3.2

C Programming Language

42 Computer Science

One of the essential operations performed in a C language programs is to provide input

values to the program and output the data produced by the program to a standard output device.

The combination of input and output functions taking together is called as console input/ouput

functions or simply console I/O. We can assign values to variable through assignment statements

such as x = 5 a = 0 ; and so on. Another method is to use the Input function scanf which can

be used to read data from a key board. For outputting results we can use the function printf

which sends results out to a terminal. There exists several functions in ‘C’ language that can

carry out input output operations. These functions are collectively known as standard Input/Output

Library. Each program that uses standard input / out put function must contain the statement.

include < stdio.h >

at the beginning.

3.3.1 Single character input output:

The basic operation done in input output is to read a character from the standard input device

such as the keyboard and to output or writing it to the output unit usually the screen. The getchar

function can be used to read a character from the standard input device. The scanf can also be

used to achieve the function. The getchar has the following form.

Variable name = getchar:

Variable name is a valid ‘C’ variable, that has been declared already and that possess the type

char.

Example program :

The putchar function which in analogus to getchar function can be used for writing characters
one at a time to the output terminal. The general form is

Basic I/O Operations3.3

include < stdio.h > // assigns stdio-h header file to your program
void main () // Indicates the starting point of the program.
{
char C, // variable declaration
printf (“Type one character:”) ; // message to user
C = getchar () ; // get a character from key board and Stores it in variable C.
printf (” The character you typed is = %c”, C) ; // output
} // Statement which displays value of C on Standard screen.

C Programming Language

Computer Science 43

putchar (variable name);

Where variable is a valid C type variable that has already been declared Ex:-

putchar ();

Displays the value stored in variable C to the standard screen.

Program shows the use of getchar function in an interactive environment.

#include < stdio.h > // Inserts stdio.h header file into the Pgm void main () // Beginning of main
function. { char in; // character declaration of variable in. printf (“ please enter one character”);
// message to user in = getchar () ; // assign the keyboard input value to in. putchar (in); // out
put ‘in’ value to standard screen. }

3.3.2 String input and output

The gets function relieves the string from standard input device while puts outputs the string
to the standard output device. A string is an array or set of characters.

The function gets accepts the name of the string as a parameter, and fills the string with characters
that are input from the keyboard till newline character is encountered. (That is till we press the
enter key). At the end, function gets appends a null terminator as must be done to any string
and returns.

The puts function displays the contents stored in its parameter on the standard screen.

The standard form of the gets function is

gets(str)

Here “str” is a string variable.

NOTE: It is recommended NOT to make use of gets() function. It is unsafe and can even crash
the C program itself. Above description is for theoretical illustration purpose only.

The standard form for the puts character is

puts(str)

Where str is a string variable.

Example program (Involving both gets and puts)

C Programming Language

44 Computer Science

3.3.3 Formatted Input For scanf

The formatted input refers to input data that has been arranged in a particular format. Input values
are generally taken by using the scanf function. The scanf function has the general form.

scanf (“control string”, arg1, arg2, arg3 ………….argn);

The format field is specified by the control string and the arguments

arg1, arg2, …………….argn specifies the address of location where address is to be stored.

The control string specifies the field format which includes format specifications and optional
number specifying field width and the conversion character % and also blanks, tabs and newlines.

The Blanks, tabs and newlines are ignored by compiler. The conversion character % is followed
by the type of data that is to be assigned to variable of the assignment. The field width specifier
is optional.

The general format for reading a integer number is

% x d

Here percent sign (%) denotes that a specifier for conversion follows and x is an integer number
which specifies the width of the field of the number that is being read. The data type character
d indicates that the number should be read in integer mode.

Example :

scanf (“%3d %4d”, &sum1, &sum2);

#include < stdio.h > // Inserts stdio.h header file into the Pgm
void main () // Beginning of main function.
{
char in; // character declaration of variable in.
printf (” please enter one character”); // message to user
in = getchar () ; // assign the keyboard input value to in.
putchar (in); // out put ‘in’ value to standard screen.
}

C Programming Language

Computer Science 45

If the values input are 175 and 1342 here value 175 is assigned to sum1 and 1342 to sum 2.
Suppose the input data was follows 1342 and 175.

The number 134 will be assigned to sum1 and sum2 has the value 2 because of %3d the number
1342 will be cut to 134 and the remaining part is assigned to second variable sum2. If floating
point numbers are assigned then the decimal or fractional part is skipped by the computer.

To read the long integer data type we can use conversion specifier % ld & % hd for short integer.

3.3.4 Input specifications for real number

Field specifications are not to be used while representing a real number therefore real numbers
are specified in a straight forward manner using % f specifier.

The general format of specifying a real number input is

scanf (% f “, &variable);

Example:

scanf (“%f %f % f”, &a, &b, &c);

With the input data

321.76, 4.321, 678 The values

321.76 is assigned to a , 4.321 to b & 678 to C.

If the number input is a double data type then the format specifier should be % lf instead of
%f.

3.3.5 Input specifications for a character

Single character or strings can be input by using the character specifiers.

The general format is

% xc or %xs

Where C and S represents character and string respectively and x represents the field width.

The address operator need not be specified while we input strings.

C Programming Language

46 Computer Science

Example :

scanf (“%C %15C”, &ch, name):

Here suppose the input given is a, Robert then a is assigned to ch and name will be assigned
to Robert.

3.3.6 Printing One Line

printf();

The most simple output statement can be produced in C’ Language by using printf statement.
It allows you to display information required to the user and also prints the variables. we can
also format the output and provide text labels. The simple statement such as

printf (“Enter 2 numbers”);

Prompts the message enclosed in the quotation to be displayed.

A simple program to illustrate the use of printf statement:-

#include < stdio.h >

void main ()

{

printf (“Hello!”);

printf (“Welcome to the world of Engineering!”);

}

Output:

Hello! Welcome to the world of Engineering.

Both the messages appear in the output as if a single statement. If you wish to print the second
message to the beginning of next line, a new line character must be placed inside the quotation
marks.

C Programming Language

Computer Science 47

For Example :

printf (“Hello!\n”);

OR

printf (“\n Welcome to the world of Engineering”);

3.3.7 Conversion Strings and Specifiers

The printf () function is quite flexible. It allows a variable number of arguments, labels and
sophisticated formatting of output. The general form of the printf () function is

Syntax

printf (“conversion string”, variable list);

The conversion string includes all the text labels, escape character and conversion specifiers
required for the desired output. The variable includes all the variable to be printed in order they
are to be printed. There must be a conversion specifier after each variable as given below.

3.3.7.1 Meanings of different conversion specifiers

Specifier - Meaning

%c – Print a character

%d – Print a Integer

%i – Print a Integer

%e – Print float value in exponential form.

%f – Print float value

%g – Print using %e or %f whichever is smaller

%o – Print actual value

%s – Print a string

%x – Print a hexadecimal integer (Unsigned) using lower case a – F

%X – Print a hexadecimal integer (Unsigned) using upper case A – F

%a – Print a unsigned integer.

C Programming Language

48 Computer Science

%p – Print a pointer value

%hx – hex short

%lo – octal long

%ld – long

3.4 Control Constructs

The control constructs test certain conditions and then directs the repeated execution of the
statements contained in the body of the program. This is called loop. During looping a set of
statements are executed until some conditions for termination of the loop is encountered. A program
loop therefore consists of two segments one known as body of the loop and other is the control
statement.

The looping process in general would include the following four steps

1. Setting and initialization of a counter

2. Execution of the statements in the loop

3. Test for a specified condition for the execution of the loop

4. Incrementing the counter

The test may be either to determine whether the loop has repeated the specified number of times
or to determine whether the particular condition has been met.

3.4.1 The While Statement:

The simplest of all looping structure in C is the while statement. The general format of the while
statement is:

while (test condition)

{

body of the loop

}

Here the given test condition is evaluated and if the condition is true then the body of
the loop is executed. After the execution of the body, the test condition is once again evaluated
and if it is true, the body is executed once again. This process of repeated execution of the body
continues until the test condition finally becomes false and the control is transferred out of the

C Programming Language

Computer Science 49

loop. On exit, the program continues with the statements immediately after the body of the loop.
The body of the loop may have one or more statements. The braces are needed only if the body
contained two are more statements

Flowcart

Note : the diamond symbol indicates condition checking

& square indicates body of the loop

Example program for generating ‘N’ Natural numbers using while loop:

include < stdio.h > //include the stdio.h file

void main() // Start of your program

{

int n, i=0; //Declare and initialize the variables

printf(“Enter the upper limit number”); //Message to the user

scanf(“%d”, &n); //read and store the number

while(I < = n) // While statement with condition

C Programming Language

50 Computer Science

{ // Body of the loop

printf(“\t%d”,I); // print the value of i

i++; increment I to the next natural number.

}

}

In the above program the looping concept is used to generate n natural numbers. Here n and
I are declared as integer variables and I is initialized to value zero. A message is given to the
user to enter the natural number till where he wants to generate the numbers. The entered number
is read and stored by the scanf statement. The while loop then checks whether the value of I
is less than n i.e., the user entered number if it is true then the control enters the loop body and
prints the value of I using the printf statement and increments the value of I to the next natural
number this process repeats till the value of I becomes equal to or greater than the number given
by the user.

3.4.2 The Do while statement

The do while loop is also a kind of loop, which is similar to the while loop in contrast to while
loop, the do while loop tests at the bottom of the loop after executing the body of the loop. Since
the body of the loop is executed first and then the loop condition is checked we can be assured
that the body of the loop is executed at least once.

The syntax of the do while loop is:

Do

{

statement;

}

while(expression);

Here the statement is executed, then expression is evaluated. If the condition expression is true
then the body is executed again and this process continues till the conditional expression becomes
false. When the expression becomes false. the loop terminates.

C Programming Language

Computer Science 51

Flowchart do-while:

Note : the diamond symbol indicates condition checking & square indicates body of the loop

To realize the usefulness of the do while construct consider the following problem. The user
must be prompted to press Y or N. In reality the user can press any key other than y or n. IN
such case the message must be shown again and the user should be allowed to enter one of
the two keys, clearly this is a loop construct. Also it has to be executed at least once. The following
program illustrates the solution.

/* Program to illustrate the do while loop*/

#include < stdio.h > //include stdio.h file to your program

void main() // start of your program

{

char inchar; // declaration of the character

do // start of the do loop

C Programming Language

52 Computer Science

{

printf(“To repeat the loop give Input asY otherwise N”); //message for the user

scanf(“%c”, &inchar); // read and store the character

} while(inchar!=’N’); //while loop ends

if(inchar==’N’) // checks whether entered character is y

printf(“you pressed N\n”); // message for the user

} //end of for loop

3.4.3 The Break Statement

Sometimes while executing a loop it becomes desirable to skip a part of the loop or quit the
loop as soon as certain condition occurs, for example consider searching a particular number
in a set of 100 numbers as soon as the search number is found it is desirable to terminate the
loop. C language permits a jump from one statement to another within a loop as well as to jump
out of the loop. The break statement allows us to accomplish this task. A break statement provides
an early exit from for, while, do and switch constructs. A break causes the innermost enclosing
loop or switch to be exited immediately.

The break statement has 2 uses. The first is to terminate a case in the switch statement. The second
is to force the termination of a loop,bypassing the normal loop conditional test as can be
understood from the flowchart given below:

C Programming Language

Computer Science 53

Note : diamond symbol tests for the condition if it is true the square indicating break ends the
loop otherwise the rest of the loop steps are executed

Example program to illustrate the use of break statement.

/* A program to find the average of the marks*/

#include < stdio.h > //include the stdio.h file to your program

void main() // Start of the program

{

int i, num=0; //declare the variables and initialize

float sum=0,average; //declare the variables and initialize

printf(“Input the marks, -1 to end\n”); // Message to the user

while(1) // While loop starts

{

scanf(“%d”,&i); // read and store the input number

if(i==-1) // check whether input number is -1

break; //if number –1 is input skip the loop

sum+=i; //else add the value of I to sum

num++ // increment num value by 1

}} end of the program

3.4.4 Continue statement

During loop operations it may be necessary to skip a part of the body of the loop under certain
conditions. Like the break statement C supports similar statement called continue statement. The
continue statement causes the loop to be continued with the next iteration after skipping any
statement in between. The flow of control in case of continues statement is shown in the flowchart
given below:

C Programming Language

54 Computer Science

Note : if condition is true: continue causes next iteration of the loop

Otherwise rest of the loop steps will be done & then the next iteration resumes.

Example :

Consider the following program that finds the sum of five positive integers. If a negative number
is entered, the sum is not performed since the remaining part of the loop is skipped using continue
statement.

#include < stdio.h > //Include stdio.h file

void main() //start of the program

{

int I=1, num, sum=0; // declare and initialize the variables

for (I = 0; I < 5; I++) // for loop

{

printf(“Enter the integer”); //Message to the user

C Programming Language

Computer Science 55

scanf(“%I”, &num); //read and store the number

if(num < 0) //check whether the number is less than zero

{

printf(“You have entered a negative number”); // message to the user

continue; // starts with the beginning of the loop

} // end of for loop

sum+=num; // add and store sum to num

}

printf(“The sum of positive numbers entered = %d”,sum); // print thte sum.

} // end of the program.

For Loop:

The for loop provides a more concise loop control structure. The general form of the for loop
is:

for (initialization; test condition; increment)

{

body of the loop

}

When the control enters for loop the variables used in for loop is initialized with the starting
value such as I=0,count=0. The value which was initialized is then checked with the given test
condition. The test condition is a relational expression, such as I < 5 that checks whether the
given condition is satisfied or not if the given condition is satisfied the control enters the body
of the loop or else it will exit the loop. The body of the loop is entered only if the test condition
is satisfied and after the completion of the execution of the loop the control is transferred back
to the increment part of the loop. The control variable is incremented using an assignment statement
such as I=I+1 or simply I++ and the new value of the control variable is again tested to check
whether it satisfies the loop condition. If the value of the control variable satisfies then the body

C Programming Language

56 Computer Science

of the loop is again executed. The process goes on till the control variable fails to satisfy the
condition.

3.4.5 Additional features of the for loop

We can include multiple expressions in any of the fields of for loop provided that we separate
such expressions by commas. For example in the for statement that begins

For(I = 0; j = 0; I < 10, j=j-10)

Sets up two index variables I and j the former initialized to zero and the latter to 100 before
the loop begins. Each time after the body of the loop is executed, the value of I will be incremented
by 1 while the value of j is decremented by 10.

Just as the need may arise to include more than one expression in a particular field of the for
statement, so too may the need arise to omit on or more fields from the for statement. This can
be done simply by omitting the desired filed, but by marking its place with a semicolon. The
init_expression field can simply be “left blank” in such a case as long as the semicolon is still
included:

For(;j!=100;++j)

The above statement might be used if j were already set to some initial value before the loop
was entered. A for loop that has its looping condition field omitted effectively sets up an infinite
loop, that is a loop that theoretically will be executed for ever.

Flow chart : For loop

C Programming Language

Computer Science 57

For loop example program:

/* The following is an example that finds the sum of the first fifteen positive natural numbers*/

#include < stdio.h > //Include stdio.h file

void main() //start main program

{

int I; //declare variable

int sum=0,sum_of_squares=0; //declare and initialize variable.

for(I=0;I < = 30; I+=2) //for loop

C Programming Language

58 Computer Science

{

sum+=I; //add the value of I and store it to sum

sum_of_squares+=I*I; //find the square value and add it to sum_of_squares

} //end of for loop

printf(“Sum of first 15 positive even numbers=%d\n”,sum); //Print sum

printf(“Sum of their squares=%d\n”,sum_of_squares); //print sum_of_square

}

3.4.6 if Statement

The simplest form of the control statement is the If statement. It is very frequently used in decision
making and allowing the flow of program execution.

The If structure has the following syntax

if (condition)
statement;

The statement is any valid C’ language statement and the condition is any valid C’ language
expression, frequently logical operators are used in the condition statement. The condition part
should not end with a semicolon, since the condition and statement should be put together as
a single statement. The command says if the condition is true then perform the following statement
or If the condition is false the computer skips the statement and moves on to the next instruction
in the program.

Example program

Sample Code
1. # include <stdio.h> //Include the stdio.h file

2. void main () // start of the program

3. {

4. int numbers // declare the variables

5. printf (“Type a number:”) // message to the user

6. scanf (“%d”, &number) // read the number from standard input

7. if (number < 0) // check whether the number is a negative number

8. number = -number // if it is negative then convert it into positive

9. printf (“The absolute value is %d \n”, number) // print the value

10. }

C Programming Language

Computer Science 59

The above program checks the value of the input number to see if it is less than zero. If it is
then the following program statement which negates the value of the number is executed. If the
value of the number is not less than zero, we do not want to negate it then this statement is
automatically skipped. The absolute number is then displayed by the program, and program
execution ends.

3.4.7 The If else construct

The syntax of the If else construct is as follows:-

The if else is actually just on extension of the general format of if statement. If the result of the
condition is true, then program statement 1 is executed, otherwise program statement 2 will be
executed. If any case either program statement 1 is executed or program statement 2 is executed
but not both when writing programs this else statement is so frequently required that almost all
programming languages provide a special construct to handle this situation.

Flowcart of if & if/else

C Programming Language

60 Computer Science

Sample Code
1. # include <stdio.h> //Include the stdio.h file

2. void main () // start of the program

3. {

4. int numbers // declare the variables

5. printf (“Type a number:”) // message to the user

6. scanf (“%d”, &number) // read the number from standard input

7. if (number < 0) // check whether the number is a negative number

8. number = -number // if it is negative then convert it into positive

9. printf (“The absolute value is %d \n”, number) // print the value

10. }

The above program checks the value of the input number to see if it is less than zero. If it is
then the following program statement which negates the value of the number is executed. If the
value of the number is not less than zero, we do not want to negate it then this statement is
automatically skipped. The absolute number is then displayed by the program, and program
execution ends.

3.4.8 Nested if Statement

The if statement may itself contain another if statement is known as nested if statement.

Syntax:

if (condition1)
 if (condition2)
 statement-1;
 else
 statement-2;
 else
 statement-3;

The if statement may be nested as deeply as you need to nest it. One block of code will only
be executed if two conditions are true. Condition 1 is tested first and then condition 2 is tested.
The second if condition is nested in the first. The second if condition is tested only when the
first condition is true else the program flow will skip to the corresponding else statement.

C Programming Language

Computer Science 61

Sample Code

1. #include <stdio.h> //includes the stdio.h file to your program

2. main () //start of main function

3. {

4. int a,b,c,big //declaration of variables

5. printf (“Enter three numbers”) //message to the user

6. scanf (“%d %d %d”, &a, &b, &c) //Read variables a,b,c,

7. if (a > b) // check whether a is greater than b if true then

8. if (a > c) // check whether a is greater than c

9. big = a // assign a to big

10. else big = c // assign c to big

11. else if (b > c) // if the condition (a > b) fails check whether b is greater
than c

12. big = b // assign b to big

13. else big = c // assign c to big

14. printf (“Largest of %d, %d & %d = %d”, a,b,c,big) //print the given numbers
along with the largest number

15. }

In the above program the statement if (a>c) is nested within the if (a>b). If the first If condition
if (a>b)

If (a>b) is true only then the second if statement if (a>b) is executed. If the first if condition
is executed to be false then the program control shifts to the statement after corresponding else
statement.

Sample Code
1. #include <stdio.h> //Includes stdio.h file to your program

2. void main () // start of the program

3. {

4. int year, rem_4, rem_100, rem_400 // variable declaration

5.

6. printf (“Enter the year to be tested”) // message for user

7. scanf (“%d”, &year) // Read the year from standard input.

C Programming Language

62 Computer Science

8.

9. rem_4 = year % 4 //find the remainder of year by 4

10. rem_100 = year % 100 //find the remainder of year by 100

11. rem_400 = year % 400 //find the remainder of year by 400

12.

13. if ((rem_4 == 0 && rem_100 != 0) rem_400 == 0)

14. //apply if condition 5 check whether remainder is zero

15. printf (“It is a leap year. \n”) // print true condition

16. else

17. printf (“No. It is not a leap year. \n”) //print the false condition }

The above program checks whether the given year is a leap year or not. The year given is divided
by 4,100 and 400 respectively and its remainder is collected in the variables rem_4, rem_100
and rem_400. A if condition statements checks whether the remainders are zero. If remainder
is zero then the year is a leap year. Here either the year – y 400 is to be zero or both the year
– 4 and year – by 100 has to be zero, then the year is a leap year.

3.4.9 The ELSE If Ladder

When a series of many conditions have to be checked we may use the ladder else if statement
which takes the following general form.

if (condition1)

 statement – 1;

 else if (condition2)

 statement2;

 else if (condition3)

 statement3;

 else if (condition)

 statement n; else

 default statement; statement-x;

This construct is known as if else construct or ladder. The conditions are evaluated from the
top of the ladder to downwards. As soon on the true condition is found, the statement associated
with it is executed and the control is transferred to the statement – x (skipping the rest of the
ladder. When all the condition becomes false, the final else containing the default statement will
be executed.

C Programming Language

Computer Science 63

/* Example program using If else ladder to grade the student according to the following rules.

Marks Grade

70 to 100

60 to 69

50 to 59

40 to 49

0 to 39

DISTINCTION

IST CLASS

IIND CLASS

PASS CLASS

FAIL

Sample Code
1. #include <stdio.h> //include the standard stdio.h header file

2. void main () //start the function main

3. {

4. int marks //variable declaration

5.

6. printf (“Enter marks\n”) //message to the user

7. scanf (“%d”, &marks) //read and store the input marks.

8.

9. if (marks <= 100 && marks >= 70) //check whether marks is less than 100
or greater than 70

10. printf (“\n Distinction”) //print Distinction if condition is True

11. else if (marks >= 60) //else if the previous condition fails Check

12. printf(“\n First class”) //whether marks is > 60 if true print Statement

13. else if (marks >= 50) //else if marks is greater than 50 print

14. printf (“\n second class”) //Second class

15. else if (marks >= 35) //else if marks is greater than 35 print

16. printf (“\n pass class”) //pass class

17. else

18. printf (“Fail”) //If all condition fail apply default condition print Fail

19. }

C Programming Language

64 Computer Science

The above program checks a series of conditions. The program begins from the first if statement
and then checks the series of conditions it stops the execution of remaining if statements whenever
a condition becomes true.

In the first If condition statement it checks whether the input value is lesser than 100 and greater
than 70. If both conditions are true it prints distinction. Instead if the condition fails then the
program control is transferred to the next if statement through the else statement and now it checks
whether the next condition given is whether the marks value is greater than 60 If the condition
is true it prints first class and comes out of the If else chain to the end of the program on the
other hand if this condition also fails the control is transferred to next if statements program
execution continues till the end of the loop and executes the default else statement fails and stops
the program.

3.4.10 The GOTO statement

The goto statement is simple statement used to transfer the program control unconditionally from
one statement to another statement. Although it might not be essential to use the goto statement
in a highly structured language like C, there may be occasions when the use of goto is desirable.

Syntax

a>
goto label;
…………
…………
…………
Label;
Statement;

b>
label;
…………
…………
…………
goto label;

The goto requires a label in order to identify the place where the branch is to be made. A label
is a valid variable name followed by a colon.

The label is placed immediately before the statement where the control is to be transformed. A
program may contain several goto statements that transferred to the same place when a program.
The label must be unique. Control can be transferred out of or within a compound statement,
and control can be transferred to the beginning of a compound statement. However the control
cannot be transferred into a compound statement. The goto statement is discouraged in C, because
it alters the sequential flow of logic that is the characteristic of C language.

C Programming Language

Computer Science 65

3.4.1 The Switch Statement

Unlike the If statement which allows a selection of two alternatives the switch statement allows
a program to select one statement for execution out of a set of alternatives. During the execution
of the switch statement only one of the possible statements will be executed the remaining
statements will be skipped. The usage of multiple If else statement increases the complexity of
the program since when the number of If else statements increase it affects the readability of
the program and makes it difficult to follow the program. The switch statement removes these
disadvantages by using a simple and straight forward approach.

The general format of the Switch Statement is :

Switch (expression)
{
Case case-label-1;
Case case-label-2;
Case case-label-n;
………………
Case default
}

When the switch statement is executed the control expression is evaluated first and the value
is compared with the case label values in the given order. If the label matches with the value
of the expression then the control is transferred directly to the group of statements which follow
the label. If none of the statements matches then the statement against the default is executed.
The default statement is optional in switch statement in case if any default statement is not given
and if none of the condition matches then no action takes place in this case the control transfers
to the next statement of the if else statement.

C Programming Language

66 Computer Science

Flow chart Case/Switch:

Sample Code
1. #include <stdio.h>

2. void main ()

3. {

4. int num1, num2, result

5. char operator

6.

7. printf (“Enter two numbers”)

8. scanf (“%d %d”, &num1, &num2)

C Programming Language

Computer Science 67

9. printf (“Enter an operator”)

10. scanf (“%c”, &operator)

11.

12. switch (operator)

13. {

14. case ‘+’:

15. result = num1 + num2

16. break

17. case ‘-’:

18. result = num1 - num2

19. break

20. case ‘*’:

21. result = num1 * num2

22. break

23. case ‘/’:

24. if (num2 != 0)

25. result = num1 / num2

26. else

27. {

28. printf (“warning : division by zero \n”)

29. result = 0

30. }

31. break

32. default:

33. printf (“\n unknown operator”)

34. result = 0

35. break

36. }

37. printf (“%d”, result)

38. }

C Programming Language

68 Computer Science

In the above program the break statement is needed after the case statement to break out of the
loop and prevent the program from executing other cases.

3.4.12 Summary

Console I/O refers to Input / Output operations that occur at the keyboard & at the monitor of
the computer. Two of the simple console I/O functions are getchar() & putchar(). The function
getchar takes a single character as input & putchar() displays a single character on the terminal.

These I/O functions work faster since they do not have the overhead of formatting the input
or output.

The commonly used format specifiers are :

%c for character

%d signed decimal integer

%f decimal floating point

%s string of characters

In addition to simple I/O functions, the standard C library contains two functions that perform
formatted input & output on the built in data types: printf() & scanf().

 The printf () & scanf () can operate on any built in data types, including characters, strings,
& numbers.

The C language provides a rich & varied program control statements that can be used to control
the way the execution of the program proceeds such as While , Do while, For Loop, if , If
else construct, Compound Relational tests, Nested if , The ELSE If Ladder, A goto transfers
control to a label mentioned after the goto construct

The break statement has 2 uses. The first is to terminate a case in the switch statement. The second
is to force the termination of a loop,bypassing the normal loop conditional test.

The continue statement is some what like break statement. But instead of forcing termination,
continue forces the next iteration of the loop to take place, skipping any code in between.

The Switch and the GOTO statement. The nature of the loop or control structure used determines
the number of times the statements (or code block) are executed, if executed at all. Switch statement
comes as an alternative to multiple if statements.

We have learnt the three ways for taking

C Programming Language

Computer Science 69

Flowcharts for control statements helps to understand the flow of control & the manner in which
the execution takes place for each of the constructs.

3.4.13 Terminal Questions

Very Short Answer Questions

1) Give the difference between getchar & putchar

2) Write the syntax of scanf () & printf() giving 1 example for each function

3) What is the functionality of gets & puts function

4) Write a C program using for loop

5) Write a program to find whether a given no. is odd or even

6) Write a program to find greatest of 3 nos.

7) Write a program to find sum of 10 natural nos.

8) Give the syntax of switch statement with example

Short answer questions

1. What would be the output of the following program

 i) main ()

 {

 Int x=3,y,z;

 y=x=10;

 z=x<10;

 printf(“\nx=%d y=%d z=%d”, x, y,z);

 }

ii) main ()

int x=15;

printf(“\n%d%d%d”,x!=15,x=20,x<30);

C Programming Language

70 Computer Science

 2) Accept an integer as input from keyboard. Write a program to determine whether the integer
is an odd number or even number.

 3) write a program to determine whether a given year is a leap year or not

 Hint : Use the % (modulus) operator

 4) write a program to find the factorial of a number accepted through keyboard.

 5). What would be the output of the following program

 i) main ()

 {

 Int x=4;

 While (x= =1)

 {

 X=x-1;

 Printf(“\n%d”,x);

 —x;

 }

 }

 ii) main ()

 {

 Int k, num=30;

 K=(num>5?(num<=10?100:200):500);

 Printf(“\n%d”,num);

 }

Fill in the blanks:

1) The character oriented console I/O functions are ——— & ————-

2) Header files in C contain ———— functions

3) The return value for a do-while to terminate is ————

4) C supports how many basic looping constructs ——————-

Introduction to Problem Solving Techniques

Computer Science 71

4
Functions

Learning objectives4.1

After going through this lesson you will be able to:

• explain a function

• describe access to function

• define parameters data types specification

• define different categories of functions.

• explain function prototype and recursion

• define storage classes – automatic, external, static variables

A program can be divided into smaller subprograms that can be developed and tested

successfully.

A function is a complete and independent program which is used (or invoked) by the

main program or other subprograms. A subprogram receives values called arguments from a

calling program, performs calculations and returns the results to the calling program.

C supports the use of library functions, which are used to carry out a number of commonly

used operations or calculations. C also allows programmers to define their own functions for

carrying out various individual tasks.

Introduction4.2

Introduction to Problem Solving Techniques

72 Computer Science

Functions have the following features:

1. It facilitates top down modular programming. In this programming style, the high level
logic of the overall problem is solved first while the details of each lower level functions
is addressed later.

2. The length of the source program can be reduced by using functions at appropriate places.
This factor is critical with microcomputers where memory space is limited.

3. It is easy to locate and isolate a faulty function for further investigation.

4. A function may be used by many other programs this means that a c programmer can
build on what others have already done, instead of starting over from scratch.

5. A program can be used to avoid rewriting the same sequence of code at two or more
locations in a program. This is especially useful if the code involved is long or complicated.

6. Programming teams does a large percentage of programming. If the program is divided
into subprograms, each subprogram can be written by one or two team members of the
team rather than having the whole team to work on the complex program

C supports the use of library functions and user defined functions. The library functions

are used to carry out a number of commonly used operations or calculations. The user-defined

functions are written by the programmer to carry out various individual tasks.

1. Many programs require that a specific function is repeated many times instead of writing
the function code as many timers as it is required we can write it as a single function
and access the same function again and again as many times as it is required.

2. We can avoid writing redundant program code of some instructions again and again.

3. Programs with using functions are compact & easy to understand.

4. Testing and correcting errors is easy because errors are localized and corrected.

5. We can understand the flow of program, and its code easily since the readability is
enhanced while using the functions.

6. A single function written in a program can also be used in other programs also.

Different features of Functions4.3

Reasons for using Functions in ‘C’4.4

Introduction to Problem Solving Techniques

Computer Science 73

There are two main parts of the function. The function header and the function body.

int sum(int x, int y)

{

int answer=0;

answer=x+y;

return(answer);

}

(A) Function Header

In the first line of the above code

int sum(int x,int y)

It has three main parts

1. The name of the function i.e. sum

2. The parameters of the function enclosed in paranthesis

3. Return value type i.e. int

(B) Function Body

What ever is written with in { } in the above example is the body of the function.

The prototype of a function provides the basic information about a function which tells

the compiler that the function is used correctly or not. It contains the same information as the

function header contains. The prototype of the function in the above example would be like

int sum(int x, int y);

The only difference between the header and the prototype is the semicolon ; there must

the a semicolon at the end of the prototype.

Function syntax:

[data type] function name (argument list)

Structure of a Function4.5

Prototypes of a Function4.6

Introduction to Problem Solving Techniques

74 Computer Science

argument declaration;

{

local variable declarations;

statements;

[return expression]

}

Example :

mul(a,b)

int a,b;

{

int y;

y=a+b;

return y;

}

When the value of y which is the addition of the values of a and b. the last two statements ie,

y=a+b; can be combined as

return(y)

return(a+b);

A function may belong to any one of the following categories:

1. Functions with no arguments and no return values.

2. Functions with arguments and no return values.

3. Functions with arguments and return values.

4. Functions with no arguments and return values.

Types of functions4.7

Introduction to Problem Solving Techniques

Computer Science 75

4.7.1 Functions with no arguments and no return values:

Let us consider the following program

/* Program to illustrate a function with no argument and no return values*/

#include<stdio.h>

main()

{

function1();

starline();

function2();

starline();

}

/*function to print a message*/

function1()

{

printf(“\n Sample subprogram output”);

}

function2()

{

printf(“\n Sample subprogram output two”);

}

starline()

{

int a;

for (a=1;a<60;a++)

printf(“%c”,’*’);

printf(“\n”);

}

Introduction to Problem Solving Techniques

76 Computer Science

In the above example there is no data transfer between the calling function and the called

function. When a function has no arguments it does not receive any data from the calling function.

Similarly when it does not return value the calling function does not receive any data from the

called function. A function that does not return any value cannot be used in an expression it

can be used only as independent statement.

4.7.2 Functions with arguments but no return values

The nature of data communication between the calling function and the arguments to

the called function and the called function does not return any values to the calling function this

shown in example below:

Consider the following:

Both the arguments actual and formal should match in number type and order. The values

of actual arguments are assigned to formal arguments on a one to one basis starting with the

first argument as shown below:

main()

{

function1(a1,a2,a3……an)

}

/*function definition*/

function1(f1,f2,f3….fn);

{

function body;

}

here a1,a2,a3 are actual arguments and f1,f2,f3 are formal arguments.

The no of formal arguments and actual arguments must be matching to each other suppose

if actual arguments are more than the formal arguments, the extra actual arguments are discarded.

If the number of actual arguments are less than the formal arguments then the unmatched formal

arguments are initialized to some garbage values. In both cases no error message will be generated.

Introduction to Problem Solving Techniques

Computer Science 77

The formal arguments may be valid variable names, the actual arguments may be variable

names expressions or constants. The values used in actual arguments must be assigned values

before the function call is made.

When a function call is made only a copy of the values actual arguments is passed to

the called function. What occurs inside the functions will have no effect on the variables used

in the actual argument list.

Let us consider the following program

/*Program to find the largest of two numbers using function*/

#include <stdio.h>

main()

{

int a,b;

printf(“Enter the two numbers”);

scanf(“%d%d”,&a,&b);

largest(a,b);

}

/*Function to find the largest of two numbers*/

largest(int a, int b)

{

if(a>b)

printf(“Largest element=%d”,a);

else

printf(“Largest element=%d”,b);

}

In the above program we could make the calling function to read the data from the terminal

and pass it on to the called function. But function does not return any value.

Introduction to Problem Solving Techniques

78 Computer Science

4.7.3 Functions with arguments and return values:

The function of the type Arguments with return values will send arguments from the calling

function to the called function and expects the result to be returned back from the called function

back to the calling function.

To assure a high degree of portability between programs a function should generally be

coded without involving any input output operations. For example different programs may require

different output formats for displaying the results. These shortcomings can be overcome by handing

over the result of a function to its calling function where the returned value can be used as required

by the program.

In the above type of function the following steps are carried out:

1. The function call transfers the controls along with copies of the values of the actual
arguments of the particular function where the formal arguments are created and assigned
memory space and are given the values of the actual arguments.

2. The called function is executed line by line in normal fashion until the return statement
is encountered. The return value is passed back to the function call is called function.

3. The calling statement is executed normally and return value is thus assigned to the calling
function.

Note:- That the value return by any function when no format is specified is an integer.

Let us consider an example of function.

#include <stdio.h>

main()

{

int a,b,c;

printf(“Enter two numbers”);

scanf(“%d%d”, &a,&b);

c=sum(a,b,);

printf(“\n The sum of two variables is %d\n,”,c);

}

sum(a,b)

Introduction to Problem Solving Techniques

Computer Science 79

int a,b;

{

 int d;

 d=a+b;

 return d;

}

4.7.4 Functions with no arguments and return values

#include <stdio.h>

main()

{

int a,b,c;

c=sum();

printf(“\n The sum of two variables is %d\n,”,c);

}

sum()

int a,b;

{

printf(“Enter two numbers”);

scanf(“%d%d”, &a,&b);

int d;

d=a+b;

return d;

}

Introduction to Problem Solving Techniques

80 Computer Science

A C function returns a value of type int as the default data type when no other type is

specified explicitly. For example if function does all the calculations by using float values and

if the return statement such as return (sum); returns only the integer part of the sum. This is since

we have not specified any return type for the sum. There is the necessity in some cases it is

important to receive float or character or double data type. To enable a calling function to receive

a non-integer value from a called function we can do the two things:

1. The explicit type specifier corresponding to the data type required must be mentioned
in the function header. The general form of the function definition is

Type_specifier function_name(argument list)

Argument declaration;

{

function statement;

}

The type specifier tells the compiler, the type of data the function is to return.

2. The called function must be declared at the start of the body in the calling function, like
any other variable. This is to tell the calling function the type of data the function is actually
returning. The program given below illustrates the transfer of a floating-point value
between functions done in a multiple function program.

main()

{

float x,y,add();

double sub();

x=12.345;

y=9.82;

printf(“%f\n” add(x,y));

printf(“%lf\n”sub(x,y);

}

Data type of the return value of function4.8

Introduction to Problem Solving Techniques

Computer Science 81

float add(a,b)

float a,b;

{

return(a+b);

}

double sub(p,q)

double p,q;

{

return(p-q);

}

We can notice that the functions too are declared along with the variables. These

declarations clarify to the compiler that the return type of the function add is float and sub is

double.

4.8.1 Void functions

The functions that do not return any values can be explicitly defined as void. This prevents

any accidental use of these functions in expressions.

C permits nesting of two functions freely. There is no limit how deeply functions can

be nested. Suppose a function a can call function b and function b can call function c and so

on. Consider the following program:

main()

{

int a,b,c;

float ratio();

scanf(“%d%d%d”,&a,&b,&c);

printf(“%f”,ratio(a,b,c));

Nesting of functions4.9

Introduction to Problem Solving Techniques

82 Computer Science

}

float ratio(x,y,z)

int x,y,z;

{

if(difference(y,z))

return(x/y-z));

else

return(0,0);

}

difference(p,q)

int p,q;

{

if(p!=q)

return(1);

else

return(0);

}

the above program calculates the ratio a/b-c;

and prints the result. We have the following three functions:

main()

ratio()

difference()

main reads the value of a,b,c and calls the function ratio to calculate the value a/b-c) this ratio

cannot be evaluated if(b-c) is zero. Therefore ratio calls another function difference to test whether

the difference(b-c) is zero or not.

Introduction to Problem Solving Techniques

Computer Science 83

Recursive function is a function that calls itself. When a function calls another function

and that second function calls the third function then this kind of a function is called nesting

of functions. But a recursive function is the function that calls itself repeatedly.

A simple example:

main()

{

printf(“this is an example of recursive function”);

main();

}

when this program is executed. The line is printed repeatedly and indefinitely. We might have

to abruptly terminate the execution.

/* program using recursive function*/

#include <stdio.h>

#include <conio.h>

long int factorial(int n);

void main()

{

int n;

clrscr();

/* read an integer*/

printf(“To which term you want its sum? “);

scanf(“%d”,&n);

printf(“”\n n!= %d”,factorial(n));

getch();

}

Recursion4.10

Introduction to Problem Solving Techniques

84 Computer Science

long int factorial(int n)

{

if (n<=1)

return(1);

else

n=n*factorial(n-1);

return(n);

}

We can pass an entire array of values into a function just as we pass individual variables.

In this task it is essential to list the name of the array along with functions arguments without

any subscripts and the size of the array as arguments

For example: The call

Largest(a,n);

Will pass all the elements contained in the array a of size n. the called function expecting

this call must be appropriately defined. The largest function header might look like:

float smallest(array,size);

float array[];

int size;

The function smallest is defined to take two arguments, the name of the array and the

size of the array to specify the number of elements in the array. The declaration of the formal

argument array is made as follows:

float array[];

The above declaration indicates to compiler that the arguments array is an array of numbers.

It is not necessary to declare size of the array here. While dealing with array arguments we should

remember one major distinction. If a function changes the value the value of an array elements

then these changes will be made to the original array that passed to the function. When the entire

array is passed as an argument, the contents of the array are not copied into the formal parameter

Functions and arrays4.11

Introduction to Problem Solving Techniques

Computer Science 85

array instead information about the address of the array elements are passed on to the function.

Therefore any changes introduced to array elements are truly reflected in the original array in

the calling function.

The scope actually determines over which part or parts of the program the variable is

available. The lifetime of the variable retains a given value during the execution of the program.

Variables can also be categorized as local or global. Local variables are the variables that are

declared within that function and are accessible to all the functions in a program and they can

be declared within a function or outside the function also.

Arguments are always passed by value in C function calls. This means that local “copies”

of the values of the arguments are passed to the routines. Any change made to the arguments

internally in the function are made only to the local copies of the arguments. In order to change

(or define) an argument in the argument list, this argument must be passed as an address, thereby

forcing C to change the “real” argument in the calling routine.

As an example, consider exchanging two numbers between variables. First let’s illustrate

what happen if the variables are passed by value:

#include < stdio.h>

void exchange(int a, int b);

void main()

{ /* WRONG CODE */

 int a, b;

 a = 5;

 b = 7;

 printf(“From main: a = %d, b = %d\n”, a, b);

 exchange(a, b);

 printf(“Back in main: “);

The scope and lifetime of variables in functions4.12

Passing arguments to a function4.13

Introduction to Problem Solving Techniques

86 Computer Science

 printf(“a = %d, b = %d\n”, a, b);

}

void exchange(int a, int b)

{

 int temp;

 temp = a;

 a = b;

 b = temp;

 printf(“ From function exchange: “);

 printf(“a = %d, b = %d\n”, a, b);

}

Run this code and observe that a and b are NOT exchanged! Only the copies of the

arguments are exchanged. The RIGHT way to do this is of course to use pointers:

#include < stdio.h>

void exchange (int *a, int *b);

void main()

{ /* RIGHT CODE */

 int a, b;

 a = 5;

 b = 7;

 printf(“From main: a = %d, b = %d\n”, a, b);

 exchange(&a, &b);

 printf(“Back in main: “);

 printf(“a = %d, b = %d\n”, a, b);

}

Introduction to Problem Solving Techniques

Computer Science 87

void exchange (int *a, int *b)

{

 int temp;

 temp = *a;

 *a = *b;

 *b = temp;

 printf(“ From function exchange: “);

 printf(“a = %d, b = %d\n”, *a, *b);

}

Note:

You use regular variables if the function does not change the values of those

arguments

You MUST use pointers if the function changes

The scope and lifetime depends on the storage class of the variable in c language the

variables can be any one of the four storage classes:

1. Automatic Variables

2. External variable

3. Static variable

4. Register variable.

4.14.1 Automatic variables

Automatic variables are declared inside a particular function and they are created when

the function is called and destroyed when the function exits. Automatic variables are local or

private to a function in which they are defined by default all variable declared without any storage

specification is automatic. The values of variable remains unchanged to the changes that may

happen in other functions in the same program and by doing this no error occurs.

/* A program to illustrate the working of auto variables*/

Different typtes of Storage classes of the variables4.14

Introduction to Problem Solving Techniques

88 Computer Science

#include

void main()

{

int m=1000;

function2();

printf(“%dn”,m);

}

function1()

{

int m=10;

printf(“%dn”,m);

}

function2()

{

int m=100;

function1();

printf(“%dn”,m);

}

A local variable lives through out the whole program although it accessible only in the

main. A program with two subprograms function1 and function2 with m as automatic variable

and is initialized to 10,100,1000 in function 1 function2 and function3 respectively. When executes

main calls function2 which in turns calls function1. When main is active m=1000. But when

function2 is called, the main m is temporarily put on the shelf and the new local m=100 becomes

active. Similarly when function1 is called both previous values of m are put on shelf and latest

value (m=10) become active, a soon as it is done main (m=1000) takes over. The output clearly

shows that value assigned to m in one function does not affect its value in the other function.

The local value of m is destroyed when it leaves a function.

Introduction to Problem Solving Techniques

Computer Science 89

4.14.2 External variables

Variables which are common to all functions and accessible by all functions of a program

are internal variables. External variables can be declared outside a function.

Example

int sum;

float percentage;

main()

{

…..

…..

}

function2()

{

….

….

}

The variables sum and percentage are available for use in all the three functions main, function1,

function2. Local variables take precedence over global variables of the same name.

For example:

int i = 10;

void example(data)

int data;

{

int i = data;

}

main()

{

Introduction to Problem Solving Techniques

90 Computer Science

example(45);

}

In the above example both the global variable and local variable have the same name

as i.

The local variable i take precedence over the global variable. Also the value that is stored

in integer i is lost as soon as the function exits.

A global value can be used in any function all the functions in a program can access

the global variable and change its value the subsequent functions get the new value of the global

variable, it will be inconvenient to use a variable as global because of this factor every function

can change the value of the variable on its own and it will be difficult to get back the original

value of the variable if it is required.

Global variables are usually declared in the beginning of the main program ie., before

the main program however c provides a facility to declare any variable as global this is possible

by using the keyword storage class extern. Although a variable has been defined after many

functions the external declaration of y inside the function informs the compiler that the variable

y is integer type defined somewhere else in the program. The external declaration does not allocate

storage space for the variables. In case of arrays the definition should include their size as well.

When a variable is defined inside a function as extern it provides type information only for that

function. If it has to be used in other functions then again it has to be re-declared in that function

also.

Example:

main()

{

int n;

out_put();

extern float salary[];

……

…..

out_put();

}

Introduction to Problem Solving Techniques

Computer Science 91

void out_put()

{

extern float salary[];

int n;

….

…..

}

A function when its parameters and function body are specified this tells the compiler

to allocate space for the function code and provides type info for the parameters. Since functions

are external by default we declare them (in calling functions) without the qualifier extern.

In this lesson we have covered the basics for creation and utilization of user defined

functions. The use of user-defined functions allows a large program to be broken down into a

number of smaller, self-contained components, each of which has some unique, identifiable

purpose. Thus a C program can be modularized through the intelligent use of such functions.

We have seen in detail the syntax and usage of functions its definition, Types of functions and

Void functions. Nesting of functions, Recursion, Functions and arrays, The scope and lifetime

of variables in functions, Automatic variables, External variables, Static variables and Register

variables.

4.17.1

/*simple function to add two integers*/

#include<stdio.h>

#include<conio.h>

void add(int x,int y)

{

Float salary[size]4.15

Summary4.16

Example Programs4.17

Introduction to Problem Solving Techniques

92 Computer Science

int result;

result = x+y;

printf(“Sum of %d and %d is %d.\n\n”,x,y,result);

}

void main()

{

clrscr();

add(10,15);

add(55,64);

add(168,325);

getch();

}

/*function to find the average of two numbers*/

#include <stdio.h>

float average(float x, float y)

{

 return (x + y)/2.0;

}

int main(void)

{

 float value1 = 1.2;

 float value2 = 2.3;

 float value3 = 0.0;

 value3 = average(value1, value2);

 printf(“\nThe average is: %f\n”, value3);

 return 0;

}

Introduction to Problem Solving Techniques

Computer Science 93

4.17.2

/* To find the factorial of a number using recursive function*/

#include <stdio.h>

#include <conio.h>

long int factorial(int n)

{

 int i;

long int prod=1;

if(n>1)

 for(i=2;i<=n;++i)

prod=prod*i;

return(prod);

}

void main()

{

int n;

clrscr();

/* read an integer*/

printf(“To which term you want its sum? “);

scanf(“%d”,&n);

printf(“”\n n!= %d”,factorial(n));

getch();

}

4.17.3

/*To find the largest of three numbers*/

#include <stdio.h>

Introduction to Problem Solving Techniques

94 Computer Science

#include <conio.h>

int maximum(int x,int y)

{

int z;

z= (x>=y) ? x : y ;

return(z);

}

void main ()

{

 int a,b,c,d;

clrscr();

printf (“\n a= “);

scanf (“%d”,&a);

printf (“\n b= “);

scanf (“%d”,&b);

printf (“\n c= “);

scanf (“%d”,&c);

d=maximum(a,b);

printf(“\n\n maximum=%d”,maximum(c,d));

getch ();

}

Essay type questions:

1. Distinguish between a user-defined function and functions in the C library?

2. How many values can a function return?

Terminal Questions4.18

Introduction to Problem Solving Techniques

Computer Science 95

3. What is the purpose of the keyword void in a function declaration?

4. Write the syntax for declaring and defining a function?

5. When a function is accessed, must the names of the actual arguments agree with the name

of the arguments in the corresponding function declaration?

6. What are the different categories of functions?

7. What is recursion?

8. What is meant by a function call?

9. What is the purpose of the return statement?

10. What are the three principal components of a function definition?

11. Can multiple expressions be included in a return statement?

12. Can multiple statements be included in a function?

13. How are argument data types specified in a function declaration?

14. Name the four storage-class specifications in C?

15. What is the importance or use of a automatic variable?

16. Differentiate between external and static variable?

Short type questions:

1. State three advantages of using functions?

2. What is meant by function call?

3. What are arguments?

4. What are formal arguments?

5. What are actual arguments?

6. State the rules with function prototype?

7. What are the two components of a function definition?

8. What is the purpose of return statement?

Introduction to Problem Solving Techniques

96 Computer Science

Fill in the blanks:

1. C is a _____________ language.

2. The need for functions avoid the repeated programming of the same _____________.

3. A function is a self contained block of _____________.

4. The arguments in the function reference are called _____________parameters..

5. The arguments that are transferred into the function from the calling portion of a

program are called

6. _____________ parameters.

7. A function can call another function this process is called _____________.

8. _____________is a process by which a function calls itself repeatedly.

9. By default the storage class of a variable is _____________.

Arrays

Computer Science 97

5
Arrays

Learning objectives5.0

The main objective is to provide the capability that enables the user to define different

sets of ordered data.

Arrays play a very important role in almost all programming languages. It provides a

very powerful feature which can be used to build a complex type of data structure like the

implementation of stacks and queues.

Data types can store only one value at a time. Therefore, you would not be able to have

a data type that contains more than one slot to store more than one variable. This is where arrays
come in. Arrays are simply data types that can store more than one variable. Each variable is

stored in an array element.

We define arrays as a finite collection of homogenous elements. It means that an array

is able to store similar type of items i.e either all integer numbers, all floating numbers, all

characters, string etc.

An array is a collective name given to a group of similar quantities. These similar quantities

could be percentage marks of 100 students, number of chairs in home, or salaries of 300

employees or ages of 25 students.

An array is a series of elements of the same type placed in contiguous memory locations

that can be individually referenced by adding an index to a unique identifier.

Introduction5.1

Arrays

98 Computer Science

That means that, for example, we can store 5 values of type int in an array without having

to declare 5 different variables, each one with a different identifier. Instead of that, using an array

we can store 5 different values of the same type, int for example, with a unique identifier.

For example, an array to contain 5 integer values of type int called billy could be

represented like this:

where each blank panel represents an element of the array, that in this case are integer

values of type int. These elements are numbered from 0 to 4 since in arrays the first index is

always 0, independently of its length.

Thus an array is a collection of similar elements. These similar elements could be all

integers or all floats or all characters etc. Usually, the array of characters is called a “string”,

whereas an array of integers or floats is called simply an array.

For instance we can define an array name salary to represent a represent a set of salaries

of a group of employees. A particular value is indicated by writing a number called index number

or subscript in brackets after the array name. For example,

salary[10]

represents the salary of the 10th employee. While the complete set of values is referred to as

an array, the individual values are called elements. Arrays can be of any variable type.

An array in C Language can be defined as number of contiguous memory locations, each

of which can store the same data type elements and which can be referenced through the same

variable name.

All elements of any given array must be of the same type

i.e we can’t have an array of 10 numbers, of which 5 are int’s and 5 are float’s. But

all the 10 elements have to be either int or float.

Definition of Arrays5.2

Arrays

Computer Science 99

Like any other variable arrays must be declared before they are used. The general form

of declaration is

type variable-name [size];

The type specifies the type of element that will be contained in the array,such as int, float, or

char and the size indicates the maximum number of elements that can be stored inside the array.

Ex1.1: int marks [30];

Here int specifies the type of the array variable.

Word marks specifies the name of the array variable.

The bracket “[]” tells the compiler that we are dealing with arrays.

30 specifies how many elements of the type int will be in our array.

Any subscripts 0 to 29 are valid.

Ex 1.2: float height[5];

Declares the height to be an array containing 50 real elements. Any subscript 0 to 49

are valid.

The C language treats character strings simply as array of characters. The size in a character

string represents the maximum number of characters that the string can hold.

Ex 1.3: char name[10];

Here, name is a character array (string) variable that can hold a maximum of 10 characters.

Suppose we read the following string constant into the string variable name.

“WELL DONE”

Each character of string is treated as an element of the array name and is stored in the

memory as follows:

Declaration of Arrays5.3

Arrays

100 Computer Science

When the compiler sees a character string, it terminates it with an additional character.

Thus, the element name[9] holds the null character ‘\0\’ at the end. When declaring character

arrays, we must always allow one extra element space for the null terminator.

The array elements are accessed with the subscripts or index. Subscript is the number

in the brackets after the array name . The array elements index or subscript begins with number

zero. So marks[0] refers to first element, marks[1] refers to second element of the array and so

on.

With the declaration

 int marks[30];

60 bytes get immediately reserved in memory, 2 bytes for each of 30 integers.(under windows/

Linux the array would occupy 120 bytes as each integer would occupy 4 bytes). As the array

is not initialized all the 30 values present would be garbage values. The arrangement of these

in memory is shown in the figure 1.1.

Fig 1.1

……………..

Array Elements in Memory5.4

Arrays

Computer Science 101

marks[0] marks[1] marks[2] marks[3] ……………………… marks[25] marks[26]

marks[27] marks[28] marks[29]

fig1.1 shows how elements of array marks are represented in the memory.

A list of items can be given one variable name using only one subscript and such a

variable is called a single-subscripted variable or a one-dimensional array.

In mathematics, we often deal with variables that are single-subscripted . For instance, we use

the equation.

to calculate the average of n values of x. The subscripted variable x
 i
 refers to the I th element

of x. In C, single subscripted variable x
 i
 can be expressed as

x[1],x[2],x[3]………………….x[n]

The subscript can begin with number 0. That is

X[0]

Is allowed. For example ,if we want to represent a set of five number say 935,40,20,57,19),

by an array variable number, then we may declare the variable as follows

int number[5];

and the computer reserves five storage locations as shown below:

One-dimensional Arrays5.5

Arrays

102 Computer Science

number[0]

number[1]

number[2]

number[3]

number[4]

The values to the array elements can be assigned as follows:

number[0] = 35;

number[1] = 40;

number[2] = 20;

number[3] = 57;

number[4] = 19;

This would cause the array number to store the values as shown below:

number[0]

number[1]

number[2]

number[3]

number[4]

These elements may be used in the program just like any other C variable. For example , the

following are valid statements:

a = number[0] + 10;

number[4] = number[0] + number[2];

number[2] = x[5] + y[10];

value[6] = number[i]* 3;

Arrays

Computer Science 103

The subscript of an array can be integer constants, integer variables like I, or expressions

that yield integers. C performs no bounds checking and, therefore, care should be exercised

to ensure that the array indices are within the declared limits.

Initializing arrays is very simple in c programming. The initializing values are enclosed

within the curly braces in the declaration and placed following an equal sign after the array name.

type array-name[size] = { list of values} ;

The values in the list are separated by commas.

Ex.1.4 int number[3] = {0,0,0};

This statement will declare the variable number as an array of size 3 and will assign

zero to each element . If the number of values in the list is less than the number of elements,

then only that many elements will be initialized. The remaining elements will be set to zero

automatically. The remaining elements will be set to zero automatically.

Ex 1.5 float total[5] = {0.0, 15.75, -10};

Here in ex 1.5 the first 3 elements are initialized to 0.0, 15.75 and -10.0 and the remaining

two elements to zero.

Here, type array-name[size] = { list of values} ; the size may be omitted. In such cases,

the compiler allocates enough space for all initialized elements.

Ex 1.6 int counter[] = { 1,1,1,1};

In ex 1.6 the statement will declare the counter array to contain four elements with initial values

1.This approach works as long as we initialize every element in the array.

Characters arrays may be initialized in a similar manner. Thus the statement

Ex 1.7 Char name[] = = {‘j’, ‘o’ , ‘k’, ‘l’ };

Declares the name to be an array of four characters, initialized with the string “ jokl”.

Here is an example which declares and initializes an array of five elements of type int. Array

can also be initialized after declaration. Look at the following C code which demonstrates the

declaration and initialization of an array.

[The symbol ‘//’ represents the comments, which don’t participate in the program execution but

just used to write the explanations of each program step]

Initializing Arrays5.6

Arrays

104 Computer Science

Ex 1.8 int myArray[5] = {1, 2, 3, 4, 5}; //declaration and

Initialization of array in one statement

 Ex. 1.9 int studentAge[4]; //Array declaration

 studentAge[0]=1; // individual element initialization.

 studentAge[1]=13;

 studentAge[2]=15;

 studentAge[3]=16;

Consider an array of size , say 100. All the 100 elemnts have to be explicitly initialized.

There is no way to specify a reapet count. In such situations it would be better to use a for loop

to initialize the elements.

Here is the section of code that places data in the array:

for(i=0;i<=29;i++)

{

 Printf(“/n Enter marks”);

 Scanf(“%d”, &marks[i]);

}

The for loop causes the process of asking for and receiving students marks from the

user, to be repeated 30 times.

The first time through the loop , i has a value 0 ,so the scanf() statement will cause the

value typed to be stored in the array element “ marks[0]” the first element of the array. This

process will be repeated till i becomes 29.

In the scanf() statement, we have used the “address of “ operator “&” on the element

marks[i] of the array. In doing so we are passing the address of this particular array element

to the scanf() function, rather than its value.

Entering Data into an Arrays5.7

Arrays

Computer Science 105

5.7.1 Copy one array into another

There is no such statement in C language which can directly copy an array into another

array. So we have to copy each item separately into another array.

#include <stdio.h>

int main()

{

 int iMarks[4]; //an Array with name iMarks is declared of size 4 and type integer.

 short newMarks[4];

 iMarks[0]=78; // initialization of zeroth element of the array iMarks

 iMarks[1]=64;

 iMarks[2]=66;

 iMarks[3]=74;

 for(i=0; i<4; i++)

 newMarks[i]=iMarks[i]; //value in array iMarks[i] are copied into array newMarks[i]

 for(j=0; j<4; j++)

 printf(“%d\n”, newMarks[j]);

 return 0;

}

In C Language one can have arrays of two or more dimensions. The two dimensional

Array is called a matrix. We can declare a 2 dimensional array as shown below.

data_type array_name[row size][column size];

Below given are some typical two-dimensional array definitions

Ex 1.10: float table[50] [50];

The first example defines table as a floating point array having 50 rows and 50 columns.

The number of elements will be 2500 (50 X50).

Ex 1.11. char line[24] [40];

Two-dimensional Arrays5.8

Arrays

106 Computer Science

The second declaration example establishes an array line of type character with 24 rows and

40 columns. The number of elements will be (24 X 40) 1920

 Ex 1.12: int student[4][2];

Here int specifies the type of the Array variable,” student” is the name of the Array,

”[4][2]”Indicate a 2 dimensional array with 2 subscripts or indexes.

subscript[4] indicates the size of rows. i.e 4 rows and subscript[2] indicates the size of column

entries i.e 2 columns.

Here is a program that stores roll number and marks obtained by a student side by side in a

matrix.

main()

{

int stud[4][2];

int i, j;

for(i=0;i<=3;i++)

{

 printf(“\n Enter roll no. and marks”);

 scanf(“%d %d”, &stud[i][0], &stud[i][1]);

}

for(i=0; i<=3; i++)

 printf(“/n %d %d”, stud[i][0], stud[i][1]);

}

Arrays

Computer Science 107

There are 2 parts to the program- in the first part through a “for loop” we read in the

values of roll no. and marks, whereas, in the second part through another “for loop” we print

out the values.

In the statement scanf(“%d %d”, &stud[i][0], &stud[i][1]); in stud[i][] and stud[i][1] the first

subscript of the variable stud is the row number which changes for very student. The second

subscript tells which of the two columns are we talking about—the zeroth column which contains

the roll no. or the first column which contains the marks.

Thus, 123 is stored in stud[0][0], 52 is stored in stud[0][1] and so on.

The above arrangement highlights the fact that a two dimensional array is nothing but a collection

of a number of one dimensional arrays placed one below the other.

Traditionally, the array elements are stored and accessed rowwise however we can access the

array elements column wise also.

5.8.1 Initializing Two-dimensional Arrays

Like the one dimensional arrays, the –dimensional arrays may be initialized by following their

declaration with a list of initial values enclosed in braces

Ex 1.13 int table[2][3] = {0, 0, 0, 1,1, 1 };

This example initializes the elements of the first row to0 and the second row to 1. The initialization

is done row by row.

Arrays

108 Computer Science

table [0] [0] = 0 table [0] [1] = 0 table [0] [2] = 0

table [1] [0] = 1 table [1] [1] = 1 table [1] [2] = 1

The 1.13 statement can be equivalently written as

int table[2][3] = {

{

 0, 0, 0

} ,

{

 1, 1, 1

}

 };

By surrounding the elements of each row by braces.

Here the values in first pair of braces are initialized to elements of first row, the values of second

pair of inner braces are assigned to second row and so on. Note that outer pair of curly braces

is required. If there are two few values within a pair of braces the remaining elements will be

assigned as zeros.

 It is important to remember that while initializing an array it is necessary to mention the second

(column) dimensions, whereas the first dimension(row)is optional.

Thus the declarations,

int arr[2][3]={12,3,23,45,56,45};

int arr[][3]={ 12,3,23,45,56,45};

are perfectly acceptable,

Whereas,

int arr[2][]= {12,3,23,45,56,45};

int arr[][]={12,3,23,45,56,45};

Would never work.

Arrays

Computer Science 109

C allows arrays of three or more dimensions. The exact limit is determined by the compiler. The

general form of a multidimensional array is

Type array-name [s1][s2][s3]……[sm];

Where S
i
 is the size of the ith dimension .

Ex 1.14 int survey[3][5][12];

Survey is a three-dimensional array declared to contain 180 integer type elements.

Three dimensional arrays are very rarely used . The example of initializing a 3d array is shown

as

Int arr[3][4][2]={

{

{2, 4}

{7, 8},

 {3, 4},

 { 5, 6}

},

{

{7, 6},

{3, 4},

{5, 3},

{2, 3}

},

{

{8, 9},

{7, 2},

{3, 4},

{5, 1}

}

 };

Multidimensional Arrays5.9

Arrays

110 Computer Science

The 3 dimensional arrays can be thought of as an array of array of arrays.

Ex 1.15 Float table[5][4][5][3];

table is a 4-dimensional array containing 300 elemsnts of floating –point type.

At some moment we may need to pass an array to a function as a parameter. In order to accept

arrays as parameters the only thing that we have to do when declaring the function is to specify

in its parameters as the element type of the array, an identifier and a pair of void brackets [].

For example, the following function:

 void procedure (int arg[])

accepts a parameter of type “array of int” called arg. In order to pass to this function an array

is declared as:

 int myarray [40];

it would be enough to write a functioncall like this:

 procedure (myarray);

Here you have a complete example:

// arrays as parameters#include <iostream.h> void printarray (int arg[], int length) { for

(int n=0; n<length; n++) cout << arg[n] << “ “; cout << “\n”;}int main (){ int firstarray[]

= {5, 10, 15}; int secondarray[] = {2, 4, 6, 8, 10}; printarray (firstarray,3); printarray

(secondarray,5); return 0;}

We would get the output as:

5 10 15

2 4 6 8 10

As you can see, the first parameter (int arg[]) accepts any array whose elements are of type

int, whatever its length. For that reason we have included a second parameter that tells the function

the length of each array that we pass to it as its first parameter. This allows the for loop that

prints out the array to know the range to iterate in the passed array without going out of range.

Arrays as Function Parameters5.10

Arrays

Computer Science 111

In a function declaration it is also possible to include multidimensional arrays. The format for

a tridimensional array parameter is:

 base_type[][depth][depth];

for example, a function with a multidimensional array as argument could be:

 void procedure (int myarray[][3][4])

Notice that the first brackets [] are left blank while the following ones are not. This is so because

the compiler must be able to determine within the function which is the depth of each additional

dimension.

Another sample example:

#include<stdio.h>

#include<conio.h>

 void read(int *,int);

 void dis(int *,int);

 void main()

 { int a[5],b[5],c[5],i;

 printf(“Enter the elements of first list \n”);

 read(a,5);

 printf(“The elements of first list are \n”);

 dis(a,5);

 }

 void read(int c[],int i)

 { int j;

Arrays

112 Computer Science

 for(j=0;j<i;j++)

 scanf(“%d”,&c[j]);

 fflush(stdin);

 }

 void dis(int d[],int i)

 { int j;

 for(j=0;j<i;j++)

 printf(“%d ”,d[j]);

 printf(“\n”);

 }

Output:

Enter the elements of first list

1

2

3

4

5

The elements of first list are

1 2 3 4 5

An array is a data structure process multiple elements with the same data type. An array

is a series of elements of the same type placed in contiguous memory locations that can be

individually referenced by adding an index to a unique identifier.

The array elements are accessed with the subscripts or index. Subscript is the number in the

brackets after the array name .

Summary5.11

Arrays

Computer Science 113

The array elements index or subscript begins with number zero. So marks[0] refers to first element,

marks[1] refers to second element of the array and so on.

There is no such statement in C language which can directly copy an array into another array.

So we have to copy each item separately into another array.

C allows arrays of three or more dimensions. The exact limit is determined by the compiler.

At some moment we may need to pass an array to a function as a parameter. In order to accept

arrays as parameters the only thing that we have to do when declaring the function is to specify

in its parameters as the element type of the array, an identifier and a pair of void brackets [].

Very Short Answer Questions

1. Define an array

2. How do you declare arrays? Explain with a simple example.

3. How do you initialize arrays?

Short Answer Questions

1. Describe Array elements in memory

2. Explain passing arrays as function parameters.

3. Explain Multi dimensional arrays with an example.

4. Explain one dimensional array with an example.

Essay type Questions

1. Explain the declaration of a One-dimensional array along with its initialization

2. Explain the declaration of a Two-dimensional array along with its initialization

3. Write a program to generate a matrix with 2 rows and 2 columns.

1. Let us C by Yashwanth kanetkar.

2. Programming in ANSI C by Balaguruswamy.

3. C the complete Reference by Herbert Schildt.

Terminal Questions5.12

Reference Books5.13

Structures and Unions

114 Computer Science

6
Structures and Unions

Learning objectives6.0

If we want to represent a collection of data items of different types using a single name, then

we cannot use an array. C supports a constructed data types known as Structure and Unions,

which are the methods for packing data of different types.

Structure is a method of packing data of different types. A structure is a convenient method of

handling a group of related data items of different data types.

A structure is a combination of different data types. Let’s take the example of a book, if we

want to declare a book we will be thinking about the name, title, authors and publisher of the

book and publishing year. So to declare a book we need to have some complex data type which

can deal with more than one data types. Let’s declare a Book.

6.1.1 Introdution

A structure is a convenient tool for handling a group of logically related data items. Structure’s

help to organize complex data in a more meaningful way. . Unions are a concept borrowed from

structures and therefore follow the same syntax as structures. Structures and Unions are powerful

concept that we may need to use in our program Design

Structure6.1

Structures and Unions

Computer Science 115

6.1.2 STRUCTURE DEFINITION

A structure definition creates a format that may be used to declare structure variables.

The general format of a structure definition is as follows

struct tag-name

{

data-type member 1;

data-type member 2;

- - - - - -

- - - - - -

- - - - - -

}

 consider the following example.

Struct book-bank

{

Char title [20];

Char author [15];

int pages;

float price;

};

Here keyword Struct holds the details of four fields these fields are title, author, pages, and
price, these fields are called structure elements or members. Each element may belong to different

types of data. Here book-bank is the name of the structure and is called the structure tag. It

simply describes as shown below.

Struct book-bank

Title array of 20 characters

Author array of 15 characters

Structures and Unions

116 Computer Science

Pages integer

Price float

We can declare structure variables using the tag name anywhere in the program. For example

 Struct book_bank book1, book2, book3;

 Declares book1, book2, and book3 as variables of type struct book_bank.

It is allowed to combine the structure declaration and variable declaration in one statement. The

declaration

Struct book_bank

{

Char title [20];

Char author [15];

int pages;

float price;

}book1, book2, book3;

is valid. The use of tag name is optional. For example,

struct

 {

 …………..

 …………..

 …………..

 }book1, book2, book3;

Declares book1,book2 and book3 as structure variables representing three books, but does not

include a tag name for later use in declarations.

Normally , structure definitions appear at the beginning of the program file, before any variables

or functions are defined. They may also appear before the main , along with #define. In such

cases the definition is global and can be used by other functions as well.

Structures and Unions

Computer Science 117

6.1.3 Initializing Structure

Like any other data type, a structure variable can be initialized. Lets initialize the structure variable

CProgrammingBook.

Struc Book-bank CProgBook =

{

“Beginning VC++ 6”,

“Ivor Horton”,

550,

200.00

};

Fig.1 The structure elements are stored in memory as shown

Fig.1

6.1.4 Accessing the members of a Structure

We can access all the members of a structure by using a dot operator.

To refer to pages of the structure defined in our sample program we use

CProgBook.pages

Similarly to refer to price we use

CProgBook.price.

Note that before the dot there must always be a structure variable and after the dot there must

always be a structure element.

6.1.5 Array of Structures

We use structures to describe the format of a number of related variables. For example, in

analyzing the marks obtained by a class off students , we may use a template to describe student

name and marks obtained in various subjects and then declare all the students and then declare

Structures and Unions

118 Computer Science

all the students as structure variables, in such cases, we may declare an array of structures, each

element of the array representing a structure variable.

An array of structures is stored inside the memory in the same way as a multi-dimensional array.

To store data of 100 books we would be required to use 100 different structure variables from

cprogbook1 to cprogbook100, which is definitely not very convenient. A better approach would

be to use an array of structures. Following program shows how to use an array of structures.

main()

{

Struct book

 {

Char name;

Float price;

Int pages;

};

Struct book b[100];

Int i;

for(i=0;i<=99;1++)

{

Printf(“\n Enter name, price and pages”);

Scanf(“%c %f %d”, &b[i].name, &b[i].price,&b[i].pages);

}

for(i=0;i<=99;i++)

printf(“\n %c %f %d”, b[i].name, b[i].price.b[i].pages);

Structures and Unions

Computer Science 119

}

Linkfloat(0

{

float a=0,*b;

b=&a;/*causes emulator to belinked*/

a=*b;/*suppress the warning- variable not used*/

}

1. Statement Struct book b[100]

This provides space in the memory for 100 structures of type struct book.

2. The syntax we use to reference each element of array b is similar to the syntax used for
arrays on int’s and char’s.

3. In an array of structures all the elements of the array are stored in adjacent memory
locations. Each element of this array is a structure and since all structures elements are
always stored in adjacent locations. In our example b[0]’s name, price and pages in memory
would be immediately followed by b[1]‘s name, price and pages and so on for all variables.

4. Purpose of linkfloat().If we don’t define it we are bound to get the error “Floating Point
Formats Not linked” with majority of compilers.

6.1.6 Array Within Structures

C permits the use of arrays as structures members. We have already used arrays of

characters inside a structure. Similarly, we can use single-dimensional or multi-dimensional arrays

of type int or float.

The following declaration is valid\;

Struct marks

{

int number;

float subject[3];

} student[2];

Structures and Unions

120 Computer Science

Here, the member subject contains three elements, subject[0],subject[1] and subject[2]. These

elements can be accesses using appropriate subscripts. For example, the name

Student[1].student[2];

Would refer to the marks obtained in the third subject by the second student.

6.1.7 Structures Within Structures

Structures within a structure mean nesting of structures. Nesting of structures is permitted in C.

lets consider the following structure defined to store information about the salary of employees.

Struct salary

{

Char name[20];

Char department[10];

int basic_pay;

int dearness_allowance;

int house_rent_allowances;

int city_allowance;

}

employee;

This structure defines the name, department, basic pay and three kinds of allowances

together and declares them under a substructure as shown below:

Struct salary

{

Char name[20];

Structures and Unions

Computer Science 121

Char department[10];

Struct

{

int dearness;

int house_rent;

int city;

}

allowances;

}

employee;

The salary structure contains a member named allowance which itself is a structure with three

members. The members contained in the inner structure namely dearness, house_rent and city

can be referred to as

employee.allowance.dearness

employee.allowance.house_rent

employee.allowance.city

An inner structure can have more than one variable. The following form of declarations

legal:

Struct salary

{

….

Struct

{

int dearness;

….

}

Structures and Unions

122 Computer Science

allowances,

arrears;

}

employee[100];

The inner most structure has two variables, allowances and arrears. This implies that both of

them have the same structure template. Note the comma after the name allowance. A

base member can be accessed as follows:

employee[1].allowance.dearness

employee[1] allowance.dearness

We can also tag names to define inner structures .

Example:

Struct pay

{

int dearness;

int house_rent;

int city;

};

Struct salary

{

Char name[20];

Char department[10];

Struct pay allowance;

Struct pay arrears;

};

Struct salary employee[100];

Structures and Unions

Computer Science 123

Pay template is defined outside the salary template and is used to define the structure of allowance
and arrears inside the salary structure.

It is also permissible to nest more than one type of structures.

Struct personal_recored

{

Struct name_part name;

Struct addr_part address;

Struct date date_of_birth;

……

……

};

Struct personal_record person1;

The first member of this structure is name which is of the type struct name_part.
Similarly, other members have their structure types.

6.1.8 Structures As Function Arguments

There are many objects defined throughout the library as structures of varying and possibly large

sizes. Due to the inefficiency of passing structures by value (copying the whole structure to a

function), structures are generally passed to functions by reference. Because of this, there is always

a potential to pass an invalid pointer to a function which expects a pointer to a structure. The

following examples illustrate the right and wrong ways to use such a function. Given a structure

and a library function which initializes it,

typedef struct

{

 int a, b, c, d;

 } big_struct;

Structures and Unions

124 Computer Science

void initialize(struct big_struct *s) /* Function initialize where big_struct is the

structure passed as argument.*/

{

 s->a = 1; /*assigning values to structure variables using s and ‘�’*/

 s->b = 2;

 s->c = 3;

 s->d = 4;

}

the incorrect method of using this function is:

int main()

{

 big_struct *s;

 initialize(s); /* WRONG */

}

because the variable s is an uninitialized pointer. The correct method is to define a structure

variable, not a pointer to a structure, and pass a pointer to the structure:

int main()

{

 big_struct s;

 initialize(&s);

}

Structures and Unions

Computer Science 125

Both structures and unions are used to group a number of different variables together. Unions

are a concept borrowed from structures and therefore follow the same syntax as structures. But

while a structure enables us to treat a number of different variables stored at different places in

memory .A union enables us to treat the same space in memory as a number of different variables.

That is a union offers a section of memory to be treated as a variable of one type in one occasion

and as a different variable of a different type on another occasion.

If we are having the less memory to use in our program, for example 64K, we can use a single

memory location for more than one variable this is called union.

You can use the unions in the following locations.

1. You can share a single memory location for a variable myVar1 and use the same location

for myVar2 of different data type when myVar1 is not required any more.

2. You can use it if you want to use, for example, a long variable as two short type variables.

3. When you dont know what type of data is to be passed to a function, and you pass union

which contains all the possible data types.

6.2.1 Defining a Union

Union can be defined by the keyword union.

union myUnion{

int var1;

long var2;

};

Here we have defined a union with the name myUnion and it has two members i.e. var1 of

type int and var2 of type long

6.2.2 Declaring the Union

We can declare the union in various ways. By taking the above example we can declare the

above defined union as.

union myUnion{

int var1;

long var2;

Unions6.2

Structures and Unions

126 Computer Science

}newUnion;

So newUnion will be the variable of type myUnion. We can also declare the union as

myUnion newUnion;

6.2.3 Initializing the Union

We can initialize the union in various ways. For example

union myUnion{

int var1;

long var2;

}newUnion={10.5};

or we can initialize it as

newUnion.var1= 10;

In later stages we can also initialize the var2 as well but this will over write the var1 value.

Normally when we declare the union it is allocated the memory that its biggest member can

occupy. So here in our example new Union will occupy the memory which a long type variable

can occupy.

The union elements are accessed exactly the same way as the structures are i.e using the dot

operator.

6.2.4 Representation of Unions and Structures in Memory

However there is major distinction between structures and union is in terms of storage. In

structures, each member has its own storage location, whereas all the members of a union use

the same location. This implies that, although a union may contain many members of a union

use the same location. This implies that, although a union may contain many members of different

types, it can handle only one member at a time.

Example.

Struct a

{

Int i;

Structures and Unions

Computer Science 127

Char ch[2];

};

Struct a key;

This data would occupy 4 bytes in memory,2 for key.i and 1 each for key.ch[0] and key.ch[1]

as shown below.

Fig 2

Now we declare a similar data type but instead of using a structure we use a union.

Union a

{

Int I;

Char ch[2];

};

Repersentation of this data in memory is shown as

Fig 3

Structures and Unions

128 Computer Science

As shown in the figure the union occupies only 2 bytes in memory .Note that the same memory

locations which are used for key.i are also being used by key.ch[0] and key.ch[1].it means that

the memory locations used by key.i can also be accessed using key.ch[0] and key.ch[1].

This is the frequent requirement while interacting with the hardware. i.e sometimes we are required

to access two bytes simultaneously and sometimes each byte individually. Faced with such a

situation union is the answer.

6.2.5 Difference between Structure and Union

A union is a way of providing an alternate way of describing the same memory area. In this

way, you could have a struct that contains a union, so that the “static”, or similar portion of the

data is described first, and the portion that changes is described by the union. The idea of a union

could be handled in a different way by having 2 different structs defined, and making a pointer

to each kind of struct. The pointer to struct “a” could be assigned to the value of a buffer, and

the pointer to struct “b” could be assigned to the same buffer, but now a->somefield and b-

>someotherfield are both located in the same buffer. That is the idea behind a union. It gives

different ways to break down the same buffer area.

The differences between structure and union in c are:

1. Union allocates the memory equal to the maximum memory required by the member of
the union but structure allocates the memory equal to the total memory required by the
members.

2. In union, one block is used by all the member of the union but in case of structure, each
member has their own memory space

6.2.5.1 Difference in their Usage

While structure enables us treat a number of different variables stored at different in memory,

a union enables us to treat the same space in memory as a number of different variables. That

is a Union offers a way for a section of memory to be treated as a variable of one type on one

occasion and as a different variable of a different type on another occasion.

There is frequent requirement while interacting with hardware to access access a byte or group

of bytes simultaneously and sometimes each byte individually. Usually union is the answer.

6.2.5.2 Difference With example

Lets say a structure containing an int, char and float is created and a union containing int char

float are declared. struct TT{ int a; float b; char c; } Union UU{ int a; float b; char c; }

Structures and Unions

Computer Science 129

sizeof TT(struct) would be >9 bytes (compiler dependent-if int, float, char are taken as 4,4,1)

sizeof UU(Union) would be 4 bytes as supposed from above. If a variable in double exists in

union then the size of union and struct would be 8 bytes and cumulative size of all variables

in struct.

Detailed Example:

struct first

{ char c;

long l;

char *p;

};

union second

{ char c;

long l;

char *p;

};

A struct first contains all of the elements c, l, and p. Each element is separate and distinct.

A union second contains only one of the elements c, l, and p at any given time. Each element

is stored in the same memory location (well, they all start at the same memory location), and

you can only refer to the element which was last stored. (ie: after “secondptr->c = 2;” you cannot

reference any of the other elements, such as “secondptr->p” without invoking undefined behavior.)

Try the following program.

#include

struct first

{ char c;

long l;

char *p;

};

Structures and Unions

130 Computer Science

union second

{ char c;

long l;

char *p;

};

int main(int argc,char *argv[])

{ struct first myfirst;

union second mysecond;

myfirst.c = 1;

myfirst.l = 2L;

myfirst.p = “This is myfirst”;

mysecond.c = 1;

mysecond.l = 2L;

mysecond.p = “This is mysecond”;

printf(“myfirst: %d %ld %s\n”,myfirst.c,myfirst.l,myfirst.p);

printf(“mysecond: %d %ld %s\n”,mysecond.c,mysecond.l,mysecond.p);

return 0;

}

6.2.6 Summary

Structure is a method of packing data of different types. A structure is a convenient method of

handling a group of related data items of different data types. A structure is a combination of

different data types.

An array of structures is stored inside the memory in the same way as a multi-dimensional array.

In an array of structures all the elements of the array are stored in adjacent memory locations.

Each element of this array is a structure and since all structures elements are always stored in

adjacent locations.

Structures and Unions

Computer Science 131

However there is major distinction between structures and union is in terms of storage. In

structures, each member has its own storage location, whereas all the members of a union use

the same location. This implies that, although a union may contain many members of a union

use the same location. This implies that, although a union may contain many members of different

types, it can handle only one member at a time.

Very Short Answer Questions:

1. Define a Structure

2. Define the Array of Structures

3. Define a union

Short Answer Questions:

1. With an example Initialize a Structure

2. How do you Access members of Structures

3. Declare a union and Initialize a union

4. Explain the concept of structures as function arguments with an example.

5. State the differences between Structures and Unions.

Essay Type Questions:

1. How do you represent unions and structures in Memory

2. Write a C program to create a Structure within Structure.

3. Write a C program to create a union and initialize the union.

4. Write a program to demonstrate array of structures.

1. Let us C by Yashwanth kanetkar.

2. Programming in ANSI C by Balaguruswamy.

3. C the complete Reference by Herbert Schildt.

Terminal Questions6.3

Reference Books6.4

Pointers and Dynamic Memory Allocation

132 Computer Science

7
Pointers and Dynamic Memory

Allocation

Introduction7.1

Pointers have many uses in C. With Pointers we can access data. Pointers are used in dynamic

memory allocation. This lesson discusses how to define, initialize and access pointer variables

in C. It also deals with pointer arithmetic and dynamic memory allocation schemes.

After completing this lesson, you are able

• To understand definition of pointer, declaration and initialization.

• To understand pointer to int, float, double and character data-types in C.

• To understand pointer to pointer.

• To understand pointer to array.

• To use pointer variable to point a structure.

• To use pointer to String.

• To understand the concept of Array of pointers.

• To recall the different dynamic memory allocation functions such as malloc,

calloc, realloc and free..

Objectives7.2

Pointers and Dynamic Memory Allocation

Computer Science 133

Pointer is a variable that is used to hold the address of another memory location. To

define a pointer variable, we use following syntax.

data type *pointer variable;

First, we specify type of the pointer variable followed by special symbol “*” and name of

the pointer variable.

Suppose, if we want to define a pointer variable, which points an integer type, we declare

in the following fashion.

Declaration: int *ptr;

In the above example, ptr is pointer variable, which can be used to point an integer

variable.

7.3.1 Pointer to int

 int *ptr; // Declaration of a pointer variable

 int *b =20; //Declaration and initialization

 int a=10; //Declaration of an integer variable and initialization

 ptr=&a; // Assigning the address of a to the pointer variable ptr

In the above example, ptr holds the address of the variable a.

If we want to access the value of the variable a, we use *ptr;

In the above example, ‘*’ is called indirection operator or diference operator.

The indirection operator indicates the value at address.

The operator ‘&’ is called address operator.

Consider the following example.

Pointer Definition, Declaration and Initialisation7.3

Declaration and initialization are done in the following
way for various data types

7.3

Pointers and Dynamic Memory Allocation

134 Computer Science

#include<stdio.h>

void main()

{

 int *ptr, a=10;

 ptr= &a;

 printf(“a=%d stored at address %u\n”,*p,p);

}

Output:

a=10 stored at address 65500

In the above example, 65500 is address of the variable a, which is stored in the pointer

variable ptr.

For integer variable two bytes of memory are allocated the starting address is stored in the

variable ptr.

7.3.2 Pointer to float

float *ptr; // Declaration of a pointer variable

float *b =20.55; //Declaration and initialization

float a=10.56; //Declaration of a float variable and initialization

ptr=&a; // Assigning the address of a to the pointer variable

Consider the following example.

#include<stdio.h>

void main()

{

 float *ptr, a=10.23;

 ptr= &a;

 printf(“a=%f stored at address %u\n”,*p,p);

}

output:

a=10.230000 stored at address 65498

Pointers and Dynamic Memory Allocation

Computer Science 135

In the above example, 65498 is address of the variable ‘a‘, which is stored in the pointer variable

ptr. In the above example, for pointer ptr two bytes are allocated. Since pointer variable holds

address of another memory location, its value is always integral value. The pointer type is used

in pointer arithmetic.

7.3.3 Pointer to double
double *ptr; // Declaration of a pointer variable

double *b =20.55; //Declaration and initialization

double a=10.56; //Declaration of a double variable and initialization

ptr=&a; // Assigning the address of a to the pointer variable

Consider the following example.

#include<stdio.h>

void main()

{

 double *ptr, a=10.23;

 ptr= &a;

 printf(“a=%f stored at address %u\n”,*p,p);

}

output:

a=10.230000 stored at address 65498

In the above example, 65498 is address of the variable ‘a ‘, which is stored in the pointer variable

ptr. In the above example, two bytes are allocated for the pointer variable ptr. Since pointer

variable holds address of another memory location, its value is always integral value. The pointer

type is used in pointer arithmetic.

7.3.4 Pointer to char
char *ptr; // Declaration of a pointer variable of type character

char *b =’c’; //Declaration and initialization

char ch=’a’ //Declaration of a character variable and initialization

ptr=&ch; // Assigning the address of “ch” to the pointer variable ptr.

Pointers and Dynamic Memory Allocation

136 Computer Science

Consider the following example.

#include<stdio.h>

void main()

{

 char *ptr, ch=’p’;

 ptr= &ch;

 printf(“ch=%c stored at address %u\n”,*p,p);

}

Output:

ch = p stored at address 65501

In the above example, 65501 is address of the variable ch, which is stored in the pointer

variable ptr.

In the above example, ptr occupy two bytes and ch occupies 1 byte memory.

It is a pointer variable, which stores the address of another pointer variable. For a pointer to

pointer variable, we use following syntax.

 data type **pointer variable;

The following example illustrates usage of pointer to pointer.

/*pointer to pointer*/

#include<stdio.h>

void main()

{

 int a=10,*q,**p;

 q=&a;/* q points a */

 p=&q; /* p points q */

Pointer to pointer7.4

Pointers and Dynamic Memory Allocation

Computer Science 137

 printf(“a=%d \n”,**p);

}

Output: a= 10

In the above program, the value of a is 10. The pointer variable q holds the address of the

variable a. The pointer to pointer variable p holds the address of q. We can use **p to get

the value of a.

The above example can be depicted with the following diagram.

/* C program for pointer to pointer*/

#include<stdio.h>

void main()

{

 int **p,*q,a=10;

 clrscr();

 q =&a; /* q points the varaibale a */

 p =&q; /* p points the pointer vairable q */

 printf(“a contains %d\n”,a);

 printf(“q contains the address of a = %u\n”,q);

 printf(“p contains the address of q = %u\n”,p);

 printf(“a=%d\n”,**p);

}

Pointers and Dynamic Memory Allocation

138 Computer Science

output:

a contains 10

q contains the address of a = 65500

p contains the address of q = 65498

a = 10

In the above program, “q” points the variable “a”. The variable p points the address of the

variable q. We can refer the variable a indirectly with ‘**p’.

An array, name by itself, is an address. The array address points the first location in the array.

In the array, elements are stored continuously. If we assign array to a pointer variable, it holds

address of the first location in the array. If we use increment operator for the pointer, then the

pointer variable points to the next location in the array. In C language, the increment operation

or decrement operation on a pointer variable is called pointer arithmetic.

The following example illustrates pointer to array.

/*pointer to array*/

#include<stdio.h>

#include<stdio.h>

void main()

{

 int a[]={10,20,30,40,50},*p,i;

 clrscr();

 p=&a[0];

 for(i=0;i<5;i++)

 {

 printf(“a[%d] value is %d stored at %u\n”,i,*p,p);

Pointer to array7.5

Pointers and Dynamic Memory Allocation

Computer Science 139

 p++;

 }

}

Output:

a[0] value is 10 stored at 65492

a[1] value is 20 stored at 65494

a[2] value is 30 stored at 65496

a[3] value is 40 stored at 65498

a[4] value is 50 stored at 65500

In the above example, the pointer variable p holds the address of the first location of the

array.

The statements p=a and p=&a are equivalent.

Each iteration the value of p is incremented by 2. Since p points an integer array, the value

of it is incremented by 2.

Pointer variables that are declared as structure type can point structure variables. To access the

members of the structure, we use the operator ‘.’. Where as to access the members of the

structures with help of pointer variable the operator ‘->’ has to be used.

The following example illustrates usage of pointer to structure.

/*program example for pointer to structure*/

#include<stdio.h>

void main()

{

 struct student

 {

 int rollno;

Pointer to struct7.6

Pointers and Dynamic Memory Allocation

140 Computer Science

 char grade;

 }student1,*std_ptr;

 /* to access members in the structure with structure

variable

 we use the operator ‘.’ */

 student1.rollno =10;

 student1.grade= ‘a’;

 std_ptr=&student1;

 /* to access memeber of the structure with pointer

to structure

 operator ‘->’ has to be used */

 printf(“rollno = %d grade = %c\n”,

 std_ptr-rollno,std_ptr->grade);

 printf(“rollno = %d grade

%c\”,(*std_ptr).rollno,(*std_ptr).grade);

}

Output :

rollno = 10 grade = a

rollno = 10 grade = a

In the above program, student1 is a structure variable with members rollno and grade.

The pointer to structure variable is std_ptr. This holds the address of the structure variable

student1.

To access the members the of the structure student1 with the pointer variable std_ptr, the operator

‘->’ has to be used.

Pointers and Dynamic Memory Allocation

Computer Science 141

To access the members of the structure student1 with the pointer variable, we can use ‘.’

operator. However, precedence problem will occur. To overcome this problem, we use the

parenthesis i.e. (*std_ptr).rollno is equivalent to std_ptr->rolln

A string in C is an array of characters. A character pointer can be used to point the starting address

of the character array i.e. string.

The following example illustrates usage of pointer to string.

/*pointer to string*/

#include<stdio.h>

void main()

{

 char name[20],*p;

 clrscr();

 puts(“Enter a string “);

 gets(name);

 p=name; /* p points the string name */

 printf(“The characters in the string are \n”);

 while(*p !=’\0')

 {

 printf(“%c\n”,*p);

 p++;

 }

 }

Output:

Enter a string

aposs

The characters in the string are

Pointer to String7.7

Pointers and Dynamic Memory Allocation

142 Computer Science

a

p

o

s

s

In the above example, p is a variable point, the starting address of the string. The while executes

p point other than null character. When a null character is pointed by p, the while terminates.

‘C’ language supports array of pointers. An array of pointers is nothing but a collection of

addresses.

/* array of pointers*/

#include<stdio.h>

void main()

{

 char *ptr[5],names[5][20];

 int i;

 clrscr();

 for(i=0;i<5;i++)

 {

 puts(“Enter a name “);

 gets(names[i]);

 ptr[i]=names[i];

 }

 puts(“Given names are “);

 for(i=0;i<5;i++)

 puts(ptr[i]);

}

Array of pointers7.8

Pointers and Dynamic Memory Allocation

Computer Science 143

Output:

Enter a name

ram

Enter a name

anil

Enter a name

ganesh

Enter a name

siva

Enter a name

vishnu

Given names are

ram

anil

ganesh

siva

vishnu

Here ptr[5] is an array of pointers. In the above example, ptr[0] contains the address of names[0],

ptr[1] contains the address of names[1] , ptr[2] contains the address of names[2], ptr[3] contains

the address of names[3] and ptr[4] contains the address of names[4].

Pointers and Dynamic Memory Allocation

144 Computer Science

There are two types of memory allocation schemes.

1) Static memory allocation and 2) Dynamic memory allocation.

1) Static memory allocation:

In this scheme, memory for an object is allocated during compile time. In this scheme, we cannot

change the number of bytes allocated for an object during run-time. Consider the following array

declaration.

int a[10].

In the above declaration, the size of array size is 10. We cannot increase or decrease the size

of the array. This is a draw back of the static memory allocation.

2) Dynamic Memory allocation

In the dynamic memory allocation, memory of an object is allocated during run-time. This type

of memory allocation is called dynamic memory allocation. To allocate memory during run-time,

we use four functions. In which three are used to allocate memory and other function is used

to reclaim unused memory. The memory allocation functions are malloc, calloc and realloc. The

function free is used to release the memory during run-time.

1) Malloc function: The malloc function allocates a block of memory that contains the

number bytes specified as parameter. This function returns the address of the first byte

in the memory space allocated. If malloc is not successful it returns NULL.

Syntax::

 Pointer = (type*) malloc(size).

Example:

 pint = malloc(sizeof(int)*10);

Memory allocation7.9

Pointers and Dynamic Memory Allocation

Computer Science 145

In this example, it allocates 20 bytes and returns the address of the starting byte if it is

allocated, otherwise it returns NULL.

2) Realloc funtion: The realloc function changes the size of the block by deleting or

extending the memory at the end of the block. If the memory cannot be extended, it

allocates a new block and copies existing memory allocation to the new block.

Syntax:

 void *realloc(void *ptr, size_t newSize);

3) Calloc function: The calloc function used to allocate memory for arrays. There is one
difference between malloc and calloc functions.. The calloc function sets null to memory

locations allocated. where as malloc does not set to null.

Syntax: void *calloc(size_t element-count, size_t element_size)

Example:

 p = (int*) calloc(100,sizeof(int));

In this example, calloc allocates 100 memory locations of integer type and returns the starting

address of the first byte.

4) Free function: This function frees memory that is allocated by malloc, realloc and calloc,
if that memory is not needed.

Syntax:

 void free(void *ptr);

As a part of this lesson, we discussed declaration, definition and initialization of a pointer variable

along with pointer to int, pointer to float, pointer to double and pointer to char.

We have also discussed pointer to pointer, array of pointers, pointer to structure and pointer to

string.

Concepts like static and dynamic memory allocations, dynamic memory allocation and

deallocation functions such as malloc, calloc, realloc and free have been discussed.

Summary7.10

Pointers and Dynamic Memory Allocation

146 Computer Science

Very short answer questions

1) What is pointer?

2) How is a pointer variable declared in ‘C ’?

3) Distinguish between pointer declaration and pointer definition.

4) What is meant by static memory allocation?

5) What is meant by dynamic memory allocation?

Short answer questions

1) Write short notes on pointer to int and float.

2) Explain how pointer variables are used to point double and char data types in C.

3) Explain various dynamic memory allocation and de-allocation functions with examples.

Essay questions

1) What is a pointer? How do you declare and initialize pointer? Explain pointer to int,
pointer to float and pointer to char with examples.

2) Distinguish between array of pointers and pointer to array with suitable examples.

3) Write short notes on pointer to string.

4) Write short notes on pointer to structure.

5) What are the various memory allocation schemes? Distinguish between static memory
allocation and dynamic memory allocation.

6) What are the various memory allocation and de-allocation functions? Explain with syntax.

Terminal questions7.11

Arrays and Linked Lists

Computer Science 147

8
Arrays and Linked Lists

Introduction8.1

Data structures are classified into two categories, namely linear data structures and non-

linear data structures. A data structure is said to be linear data structure if its elements form a

sequence. Arrays and linked lists are examples of linear data structures. Trees and Graphs are

examples for non-linear data structures. This lesson covers representation of arrays and operations

on arrays such as traversing, inserting and deleting elements in an array. This lesson also covers

representation of linked list and operations on linked-list such as traversing, inserting an element,

deleting an element and searching an element.

After completing this lesson, you will be able to

• Make a representation of Linear Array.

• Make traversing elements in a Linear Array.

• Insert an element into a Linear Array.

• Delete an element in a Linear Array.

• Make a representation of Linked list in the memory.

• Make traversing elements in a Linked List

• Insert an element in the Linked List

• Delete an element in the Linked List.

• Search an element in the Linked List.

Objectives8.2

Arrays and Linked Lists

148 Computer Science

Linear Array consists of finite number of elements as data elements of same type. These

elements are stored sequentially in the memory. These elements can be accessed with a subscript.

Assume a linear array with “n” elements. If the elements are A
1
, A

2
, A

3
, A

n ;
then the elements

can be accessed with the index value ranging from 1, 2,...., n.

If a variable is used in place of an index, then the variable is called indexed variable.

The elements in the linear array are represented sequentially in the computer

memory. The elements of the linear array are stored in the consecutive memory locations.

Traversing operation is to visit all the elements in the data structure. Suppose “A” is

linear array with “N” elements. The following algorithm is used to traverse elements in the

array “A”.

8.4.1 Algorithm for traversing a linear Array

Traverse (A, N)

Here A is the linear array with N elements.

Step 1: Repeat steps 2 and 3 for I = 1 to N.

Step 2: Apply process to A [I].

Step 3: Return.

Example:

The following “C” function traverses elements in a

linear array a with size n.

/* C function to traverse the elements in the array size

n. In the “C” language, array subscripts starts from 0. Hence

for loop also starts from 0 and ends with n-1.

It prints the values of array from a [0] to a [n-1].*/

Void traverse (int a [50], int n)

{

Representation of Linear Array8.3

Traversing a Linear Array8.4

Arrays and Linked Lists

Computer Science 149

 int i;

For (i=0; i<n;i++)

 printf(“%d “,a[i]);

}

Inserting refers to adding an element to the Linear Array. If we want to insert an element

at the end of the array, we can easily insert that element at n+1 position. If we want to insert

an element in the position k, i.e. 1<=k<=n., we have to shift elements in the linear array from

the position k to n. We have to copy the element which is in the position a[n] to a [n+1], and

a[n-1] element to a[n]. We have to continue the process a[k] to a [k+1]. Then copy the inserted

value into a [k] location.

8.5.1 The following algorithm is to insert an element into the linear array.

INSERT (A, N, K, ITEM)

Where A is linear array with size, N; ITEM is value to be inserted into the linear array. K

is position of array where ITEM is to be inserted.

Step1: Set I: = N.

Step2: Repeat steps 3 and 4 while I>=K

Step3: Set Ad [I+1] = a [I].

Step4: Set I = I – 1

Step5: Set A [K] = ITEM

Step6: Set N= N + 1

Step7: Return

Inserting an Element in a Linear Array8.5

Arrays and Linked Lists

150 Computer Science

#include<stdio.h>

/* Insert function is to insert an element into the

linear array*/

void insert(int a[50],int *n,int k,int item)

{

 int i;

 for(i=*n;i>=k;i—)

 a[i+1]=a[i];

 a[k]=item;

 *n=*n+1;

}

void main()

{

 int a[50],i,n,item,position;

 clrscr();

 printf(“Enter value for n “);

 scanf(“%d”,&n);

/*To load values into the array*/

 for(i=1;i<=n;i++)

 scanf(“%d”,&a[i]);

/*To read the item*/

 printf(“Enter item to be inserted “);

 scanf(“%d”,&item);

/*To read the postion of the array*/

 printf(“Enter position “);

 scanf(“%d”,&position);

/*function to insert an element into the array at the

position k*/

 insert(a,&n,position,item);

Arrays and Linked Lists

Computer Science 151

 printf(“given values are \n”);

/*To print values in the array*/

 for(i=1;i<=n;i++)

 printf(“%d “,a[i]);

 }

Output:

Enter value for n 5

11

22

33

44

55

Enter item to be inserted 80.

Enter position 2.

Given values are

80 22 33 44 55

Let A be linear array with elements N. Let K be the array location of the array to

be deleted. To delete the element in the A [K], copy the element from A [K+1] to A [K],

A [K+2] to A [K+1]. We continue the process by copying the element A [N-1] to A [N].

8.6.1 Algorithm to delete the element in the Array at the position K

DELETE (A, N, K, ITEM)

Step1: A is linear array with the N locations. K is the position of the array whose value is

to be deleted. ITEM is the variable to hold the deleted item.

Step1: Set ITEM= A [K]

Step2: Repeat steps for I = K to N-1

Step3: Set A[I]=A[I+1]

Step4: Set N= N – 1

Step5: Return.

Deleting an element from a linear array8.6

Arrays and Linked Lists

152 Computer Science

8.6.2 Program for deleting an element in the linear array

#include<stdio.h>

/*function to delete an element from the array*/

void delete1(int a[50],int *n,int k,int *item)

{

 int i;

 *item=a[k];

 for(i=k;i<=(*n-1);i++)

 a[i]=a[i+1];

 *n=*n-1;

 }

/*main block*/

void main()

{

 int a[50],i,n,item,position;

 clrscr();

 printf(“Enter value for n “);

 scanf(“%d”,&n);

 for(i=1;i<=n;i++)

 scanf(“%d”,&a[i]);

 printf(“Enter position”);

Arrays and Linked Lists

Computer Science 153

 scanf(“%d”,&position);

 delete1(a,&n,position,&item);

 printf(“Deleted item is %d\n”,item);

 printf(“Array elements after deletion”);

 for(i=1;i<n;i++)

 printf(“%d “,a[i]);

 }

 Output:

Enter value for n 5

11

22

33

44

5

Enter position3

Deleted item is 33

Array elements after deletion

11 22 44 55

8.7.1 Definition

A linked list is a linear collection of elements. These elements are called nodes. Each

node consists of two parts. The first part is called info which contains the data and the second

part is called link which contains the address of the next node. The starting node address is stored

in a variable called start.

8.7.2 Representation of Linked Lists in Memory

Linked list in the computer memory can be represented in two ways.

1) Array representation. 2) Linked representation.

Linked List and its representation8.7

Arrays and Linked Lists

154 Computer Science

8.7.2.1 Array representation of a linked list

In this representation, two linear arrays are used, one for info part and the other for link
part. The array subscripts are used to identify the location address. The first node address is stored

in another variable start. The address of the next node is stored in the link.

The link in the last node contains “0”. This is used as null character.

In the array representation of a linked list, two linear arrays info and link are used. The

first node address is separately stored in a variable called start. In the above linked list, the first

node address is 1, stored in the variable start. The first location info contains “A”. Link [1]

contains the address of the next node i.e. 2. Info [2] contains “P” and Link [2] contains the address

of the next node i.e. 3. Info [3] contains “O” and Link [3] contains address of the successor

i.e. 4. Info [4] contains “S” and Link [4] contains the address of the next node i.e. 5. Info [5]

contains the “S” and Link [5] contains “S” and Link [5] contains “0”.

Arrays and Linked Lists

Computer Science 155

8.7.2.2 Linked Representation of linked list

In this representation, the data are stored in the form of nodes. Each node contains two

parts called info and link. This node is defined as record type or structure type. For the node,

memory is allocated during run-time.

In the “C” language, node is created with the structure data type. For the node, memory

is allocated and reallocated during run-time. Linked representation is more efficient than array

representation.

The link in the last node contains Null.

Figure – I

The following algorithm is used to traverse a linked list.

Traverse (Start)

Start contains the address of the first node.

Step1: Set ptr = Start

Step2: Repeat Steps 3 and 4 while ptr != NULL

Step3: Apply process to ptr->info

Step4: ptr = ptr -> link

Step5: Return

Consider the linked list as shown in the Figure – I. Initialize the pointer variable. We

continue the process until ptr equals to Null. First ptr points the first node, whose address is

1. If it is not equal to null, apply process to ptr->info (i.e. display etc,) and the new value of

the ptr is 2. Now ptr value not equals to Null. Apply process to ptr->info. Assign the value of

Traversing a linked list8.8

Arrays and Linked Lists

156 Computer Science

ptr->link to ptr. The new value of ptr is 3. Continue the same process repeatedly until ptr equals

to null.

The following C program illustrates traversing.

#include<stdio.h>

#include<alloc.h>

/*definition of the node*/

struct node

{

 int info;

 struct node *link;

}*start=NULL;

void insert_first()

{

 int item;

 struct node *newnode;

 newnode=(struct node*)malloc(sizeof(struct node));

 printf(“enter item “);

 scanf(“%d”,&item);

 newnode->info=item;

 newnode->link=start;

 start=newnode;

}

/*traverse the linked list*/

void display()

{

 struct node *ptr;

Arrays and Linked Lists

Computer Science 157

 ptr=start;

 while(ptr!=NULL)

 {

 printf(“%d “,ptr->info);

 ptr=ptr->link;

 }

 printf(“\n”);

}

/*main block*/

void main()

{

 int i;

 clrscr();

 for(i=1;i<=3;i++)

 insert_first();

 printf(“the elements in the list are \n”);

 display();

}

Output:

enter item 33

enter item 44

enter item 55

the elements in the list are

55 44 33

In the above program accepts three elements. These elements are stored in a linked

list. The “display()” function is to traverse elements in the linked list. ??? Consult
the author

Arrays and Linked Lists

158 Computer Science

We can insert an element into a linked list in two different ways.

 1) Based on the location

 2) Based on the value.

In this discussion, we insert an element into the linked list based on the location.

First, we read item to be inserted and its location. If location has a value “0”, we insert

the element at the beginning of the list. Otherwise, we insert the item after the location in the

linked list.

Consider the following linked list.

To insert an element into the linked list, first we create a new node and store its address

in the variable newnode. Copy the item into the newnode->info and store NULL in newnode-

>link. If location = 0, store the starting value into the newnode->link and store newnode value

Inserting an element into the linked list8.9

Arrays and Linked Lists

Computer Science 159

into start. Otherwise, initialize ptr variable with start and move ptr up to location-1. Store ptr-

>link value into newnode->link and ptr->link with newnode.

The following algorithm shows how to insert an element into the linked list.

INSERT (START, ITEM, LOCATION)

STEP 1: Create a NODE and store its address in the variable NEWNODE.

STEP 2: IF NEWNODE = NULL, THEN WRITE (“UNDERFLOW”) AND

RETURN.

STEP 3: SET NEWNODE->INFO = ITEM AND NEWNODE->LINK=NULL

STEP 4: IF LOCATION = NULL, THEN

 NEWNODE->LINK=START AND START=NEWNODE

 AND RETURN

STEP 5: SET PTR= START

STEP 6: SET I = 1

STEP 7: Repeat STEP 8 AND STEP 9 while (I<LOCATION)

STEP 8: I = I+1

STEP 9: PTR=PTR->LINK

STEP 10: SET NEWNODE->LINK=PTR->LINK AND PTR->LINK=NEWNODE

STEP 11: RETURN.

The following “C” program illustrates insertion of an element at a specified location in a linked

list.

#include<stdio.h>

#include<alloc.h>

/*definition of the node*/

Arrays and Linked Lists

160 Computer Science

struct node

{

 int info;

 struct node *link;

}*start=NULL;

/*C function for inserting an element at a specified location

in linked list*/

void insert()

{

 struct node *newnode,*ptr;

 int item;

 int location;

 int i;

 printf(“Enter item “);

 scanf(“%d”,&item);

 printf(“Enter location”);

 scanf(“%d”,&location);

 newnode=(struct node*)malloc(sizeof(struct node));

 if(newnode==NULL)

 printf(“Underflow\n”);

 else

 {

 newnode->info=item;

 newnode->link=NULL;

 if(location==0)

 {

Arrays and Linked Lists

Computer Science 161

 newnode->link=start;

 start=newnode;

 }

 else

 {

 ptr=start;

 i=1;

 while(i<location)

 {

 i = i + 1;

 ptr=ptr->link;

 }

 newnode->link=ptr->link;

 ptr->link=newnode;

 }

 }

}

/*traverse the linked list*/

void display()

{

 struct node *ptr;

 ptr=start;

 while(ptr!=NULL)

 {

 printf(“%d “,ptr->info);

 ptr=ptr->link;

 }

 printf(“\n”);

}

Arrays and Linked Lists

162 Computer Science

/*main block*/

void main()

{

 int i;

 clrscr();

 for(i=1;i<=3;i++)

 insert();

 printf(“the elements in the list are \n”);

 display();

}

Output:

Enter item 11

Enter location 0

Enter item 33

Enter location 0

Enter item 44

Enter location 1

The elements in the list are

33 44 11

An element can be deleted from a linked list in various ways. We can delete an element

from a linked list based on the value or based on the location. In this section, we discuss the

deletion process based on the value.

If linked list is empty, we cannot delete an element from the linked list. If the item to

be deleted exists at the beginning of the linked list, we store the first node address in a variable

temp, start will point the address of the next node and we delete the node pointed by temp.

Otherwise, we store the starting address of the linked list in the variable “prev” and

address of the next node in the variable temp. We start comparing the elements in the linked

list from the second node onwards. If the value in the second equals to the item, then we store

the temp->link value into prev->link and delete the node temp.

Deleting an element from a linked list8.10

Arrays and Linked Lists

Computer Science 163

Consider the following example.

Fig. L1

Case 1: if item = “A”

Start->info and item are equal, then we store the address of the first node in the variable

temp and start points the address of next node. Then, we delete the node temp.

After deleting the node, the linked list has the following elements.

The node temp will be deleted.

Case (2): Let item = “S”

 The elements in the linked list are as shown in the Fig. L1.

As the linked list is not empty, we continue the delete process.

Then we compare first element in the list with item, if they do not match, we store the

start address in a variable prev. We store address of the second node in the list in a variable

temp. The second value in the list is “P”, which is not equal to the item. Then store temp value

in the variable prev and assign next node address to the variable temp. Now temp->info value

is “S”, which is not equal to the item. Then copy the temp value into the variable prev and

assign next node address to the variable temp. Now compare temp ->info with item. Both are

equal, then copy the temp->link value into the prev->link and delete the node temp.

Arrays and Linked Lists

164 Computer Science

After deleting the item, the linked list has the following items.

The link of O is differing. Is it 4 or 5??? Author is to be consulted.

The following Algorithm is to delete an element from a linked list.

DELETE (Start, item)

Start points the first node of the linked list. Item is value to be deleted from the linked list.

Step 1: IF START = Null then write (“underflow “) and return

Step 2: IF START -> INFO = ITEM then SET TEMP = START,

 SET START = START- >LINK , ITEM=TEMP->INFO and delete

TEMP

 ELSE

 SET TEMP = START->LINK

 PREV = START

 REPEAT while(TEMP->link !=NULL)

 IF(TEMP->INFO=ITEM)

 SET ITEM =TEMP->INFO

 SET PREV->LINK= TEMP->LINK

 And delete TEMP and return

 ELSE

 PREV=TEMP

 TEMP=TEMP->LINK

Step 3: WRITE (“Item not found “)

Step 4: RETURN

Arrays and Linked Lists

Computer Science 165

The following “C”program illustrates delete operation.

#include<stdio.h>

#include<alloc.h>

/*definition of the node*/

struct node

{

 int info;

 struct node *link;

}*start=NULL;

/*algorithm for inserting an element at a specified

location*/

void insert()

{

 struct node *newnode,*ptr;

 int item;

 int location;

 int i;

 printf(“Enter item “);

 scanf(“%d”,&item);

 printf(“Enter location”);

 scanf(“%d”,&location);

 newnode=(struct node*)malloc(size of(struct node));

 If (newnode==NULL),

 printf(“Underflow\n”);

 Else

 {

 newnode->info=item;

Arrays and Linked Lists

166 Computer Science

 newnode->link=NULL;

 if(location==0)

 {

 newnode->link=start;

 start=newnode;

 }

 Else

 {

 ptr=start;

 i=1;

 while(i<location)

 {

 i = i + 1;

 ptr=ptr->link;

 }

 newnode->link=ptr->link;

 ptr->link=newnode;

 }

 }

}

/*traverse the linked list*/

void display()

{

 struct node *ptr;

 ptr=start;

 while(ptr!=NULL)

 {

 printf(“%d “,ptr->info);

 ptr=ptr->link;

 }

Arrays and Linked Lists

Computer Science 167

 printf(“\n”);

}

void delete()

{

 struct node *temp;

 struct node *prev;

 int item;

 if (start==NULL),

 printf(“Underflow\n”);

 else

 {

 printf(“Enter item to be deleted “);

 scanf(“%d”,&item);

 if(start->info==item)

 {

 temp=start;

 start=start->link;

 printf(“Item deleted “);

 free(temp);

 return;

 }

 else

 {

 temp=start->link;

 prev=start;

 while(temp !=NULL)

 {

 if(temp->info==item)

 {

 item=temp->info;

 prev->link=temp->link;

 free(temp);

Arrays and Linked Lists

168 Computer Science

 printf(“Deleted item is %d\n”,item);

 return;

 }

 else

 {

 prev=temp;

 temp=temp->link;

 }

 }

 if(temp==NULL)

 printf(“Item not found “);

 }

 }

}

/*main block*/

void main()

{

 int i;

 clrscr();

 for(i=1;i<=3;i++)

 insert();

 printf(“the elements in the list are \n”);

 display();

 delete();

 printf(“\n”);

 display();

}

Output:

 Enter item 44

 Enter location0

 Enter item 33

Arrays and Linked Lists

Computer Science 169

 Enter location0

 Enter item 22

 Enter location0

 The elements in the list are

22 33 44

Enter item to be deleted 44

Deleted item is 44

22 33

To search for a particular item in a linked list, we begin searching from the first node.

We compare first node information with our item. If both are equal, search is successful; otherwise,

we compare the next element in the linked list. If both are equal, search is successful and we

terminate the search procedure. Otherwise, we continue to search for the item in the next location.

When all elements are compared and if there is no match for the item, then we claim search

is unsuccessful.

Consider the above linked list with five elements. Suppose, we want to search an item

whose value is “O”.

We take a pointer variable ptr and initialize with start. We compare ptr->info with item.
Since both are not equal, we choose the next location. Now ptr points the address of the next

location. Now compare ptr->info with item. The value at this node is “P”, which is not equal

to the item value i.e. “O”. Now initialize the ptr variable with the address of the next node.

Compare ptr->info with Item. As they are equal, we terminate the process.

Suppose if the item value is “M”. We start searching from the first location. We compare

every element in the list. There is no match in the linked list. The ptr contains the value Null.

This is an example for unsuccessful search.

Searching for an element in the linked list8.11

Arrays and Linked Lists

170 Computer Science

Algorithm: SEARCH (START, ITEM)

The variable START contains the address of the first node of the list. ITEM contains the value

to be searched from the linked list.

Step1: Set ptr = Start

Step2: Repeat Steps 3 to 4 while ptr != NULL

Step3: if (ptr->info = item) then

 Write (“Item found “) and return

Step4: Set ptr = ptr -> link

Step5: Write (“Item not found “)

Step6: Return

The following C program illustrates search operation in a linked list.

#include<stdio.h>

#include<alloc.h>

/*definition of the node*/

struct node

{

 int info;

 struct node *link;

}*start=NULL;

/*algorithm for inserting an element at a specified

location*/

void insert()

{

 struct node *newnode,*ptr;

 int item;

 int location;

Arrays and Linked Lists

Computer Science 171

 int i;

 printf(“Enter item “);

 scanf(“%d”,&item);

 printf(“Enter location”);

 scanf(“%d”,&location);

 newnode=(struct node*)malloc(sizeof(struct node));

 if(newnode==NULL)

 printf(“Underflow\n”);

 else

 {

 newnode->info=item;

 newnode->link=NULL;

 if(location==0)

 {

 newnode->link=start;

 start=newnode;

 }

 else

 {

 ptr=start;

 i=1;

 while(i<location)

 {

 i = i + 1;

 ptr=ptr->link;

 }

 newnode->link=ptr->link;

 ptr->link=newnode;

 }

 }

}

Arrays and Linked Lists

172 Computer Science

/*traverse the linked list*/

void display()

{

 struct node *ptr;

 ptr=start;

 while(ptr!=NULL)

 {

 printf(“%d “,ptr->info);

 ptr=ptr->link;

 }

 printf(“\n”);

}

/*search operation*/

void search()

{

 struct node *ptr;

 int item;

 printf(“Enter item to be searched “);

 scanf(“%d”,&item);

 ptr=start;

 while(ptr!=NULL)

 if(ptr->info==item)

 {

 printf(“item found “);

 return;

 }

 else

 ptr=ptr->link;

 printf(“Item not found “);

}

Arrays and Linked Lists

Computer Science 173

/*main block*/

void main()

{

 int i;

 clrscr();

 for(i=1;i<=3;i++)

 insert();

 printf(“the elements in the list are \n”);

 display();

 search();

}

Output:

First run:

Enter item 22

Enter location0

Enter item 33

Enter location0

Enter item 56

Enter location0

The elements in the list are

 56 33 22

Enter item to be searched 99

item not found

Second run:

Enter item 44

Enter location0

Enter item 33

Enter location0

Enter item 66

Enter location0

the elements in the list are

 66 33 44

Arrays and Linked Lists

174 Computer Science

Enter item to be searched 33

item found

In this lesson, we have discussed about linear array and operations such as insertion,

deletion and traversing.

This lesson also covered linked list representation, operations on linked lists such as

traversal, insertion, deletion and search.

Very short answer questions

1) What is an array?

2) What is a linked list?

3) What are the advantages with linked lists?

Short answer questions

1) Write an algorithm to insert an element into a linear array.

2) Write an algorithm to delete an element from a linear array.

3) Write an algorithm to traverse a linked list.

Essay Questions

1) What is a linear array? How do you represent a linear array in the computer memory?

2) Write an algorithms to insert and delete elements in a linear array.

3) What is a linked list? How do you represent a linked list in the computer memory?

4) Write an algorithm to insert an element in a linked list.

5) Write an algorithm to delete an element from a linked list.

6) Write an algorithm to search for an element in a linked list.

7) Write a C program to insert and delete elements from a linked list.

8) Write a C program to search for an element in a linked list.

9) Write a C program to insert and delete elements in a linear array.

Summary8.12

Terminal questions8.13

Stacks and Queues

Computer Science 175

This lesson covers two data structures named stacks and queues.

Stack is used for postponed operations. Stack is a linear data structure in which insertions

and deletions take place at only one end called top. Stack is also called “pile” or push-down-

list or last-in-first-out (LIFO). Stacks are used while calling a function, conversion of infix

expression into postfix and recursion etc.

Queue is linear data structure in which insertion takes place at one end called “front” and

deletion takes place at one end called “rear”. Queue is also called first-in-first-out (FIFO). A

queue is a batch of jobs waiting to be processed.

After completing this lesson, you are able to
• Define a stack.

• Make array representation of stack.

• Make linked representation of stack.

• Mention the applications of stack.

• Define a queue.

• Make array representation of queue.

• Make linked representation of queue.

• Mention the applications of queues

9
Stacks and Queues

Introduction9.1

OBJECTIVES9.2

Stacks and Queues

176 Computer Science

Stack: Stack is a linear data structure in which insertion and deletion take place at only one

end called “top”. The procedure to insert an element in the stack is called “push” and the procedure

to remove an element from the stack is called “pop”. Stack is also called push-down-list or pile

or last-in-first-out (LIFO).

Array can be used to represent a stack. A linear array is used to store stack elements. Let

the array be STACK. The variable TOP points the top of the stack. If stack is empty, TOP contains

0 or NULL. The variable MAXSTACK denotes the maximum size of the stack. Now, let us

learn about each of STACK operations in detail.

9.4.1 PUSH OPERATION

The procedure to add an element to the stack is called PUSH. If the stack is full, we cannot

insert an element onto the stack. This condition is called “OVERFLOW”. In the array,

representation of the stack if TOP equals to MAXSTACK indicates overflow. Otherwise, simply

increment the value of the top by 1 and store the ITEM (value to be inserted into the stack)

in the STACK [TOP] position.

The following algorithm is used to insert an element into the stack.

PUSH (STACK, TOP, MAXSTACK, ITEM)

STACK is the linear array. TOP points the top element. MAXSTACK contains the limit

of the stack. ITEM is value to be inserted in the stack

STEP 1: If TOP = MAXSTACK, then Print “OVERFLOW “and Return.

STEP 2: Set TOP = TOP + 1

STEP 3: STACK [TOP] = ITEM

STEP 4: RETURN

9.4.2 POP OPERATION

The procedure to delete an element from the stack is called pop. If the stack is empty, we

cannot delete any element from it. If TOP equals NULL, we cannot delete an element from the

DEFINITION OF STACK9.3

ARRAY REPRESENTATION OF STACK9.4

Stacks and Queues

Computer Science 177

stack. If top is not equal to NULL, then copy the STACK[TOP] element into the ITEM and

decrement the value of TOP by 1.

POP(STACK, TOP, ITEM)

STACK is the linear array. TOP holds the position of top element. ITEM is used to store

the deleted value from the stack.

STEP1: IF TOP = NULL, then Print “UNDERFLOW” and Return

STEP2: Set ITEM = STACK [TOP]

STEP3: Set TOP = TOP – 1

STEP4: RETURN

Example:

Consider the following example. Initially, stack is empty.

i.e. top =-1. If maxstack is 5,

1) Insert Item value 10.

Then, stack is in figure (a)

2) Insert item value 20.

Then, stack is in figure (b)

3) Insert item whose value is, say, 30

Then, stack is shown in figure(c).

4) Insert item whose value is, say, 40.

Then, stack is shown in figure (d)

5) Insert item whose value is 50

Then, stack is shown in figure (e)

Stacks and Queues

178 Computer Science

If we want to insert one more element, overflow occurs.

If we delete an element from the stack, 50 will be popped from the stack. After deleting

the top element, the stack has the following elements.

If we delete one more element, 40 will be popped from the stack and the stack will have

the following elements.

If we delete one more element, then the stack has the following elements.

If we delete two elements from the stack, then stack becomes empty. Further we cannot

delete an element from the stack. If we try to delete one element from the stack, underflow takes

place.

Stacks and Queues

Computer Science 179

9.4.3 IMPLEMENTATION OF STACK IN C USING ARRAYS

/*STACK USING ARRAY*/

#include<stdio.h>
#define MAXSTACK 10
int stack[MAXSTACK],top=-1;

/*function to push an element*/

void push()
{
 int item;
/*checks whether stack is full or not*/
 if(top= =MAXSTACK)
 printf(“overflow \n”);
 else
 {
 printf(“Enter item “);
 scanf(“%d”,&item);
 stack[++top]=item;
 }
}

/*function to pop an element*/
void pop()
{
 int item;

/*checks whether stack is empty or not*/
 if(top= = -1)
 printf(“Underflow \n”);
 else
 {
 item=stack[top—];
 printf(“poped item is %d\n”,item);
 }
}

/*function to display elements of the stack*/

Stacks and Queues

180 Computer Science

void display()
{
 int i;

 if(top !=-1)
 {
 printf(“The elements in the stack are \n”);
 for(i=top;i>=0;i—)
 printf(“%d “,stack[i]);
 printf(“\n”);
 }
}

/*main block*/

void main()
{
 int choice;

 clrscr();
 do{
 printf(“1.push 2.pop 3.display 4.exit “);
 printf(“Enter choice (1-4) “);
 scanf(“%d”,&choice);

 switch(choice)
 {

 case 1: push();
 break;

 case 2: pop();
 break;

 case 3: display();
 break;

 }
 }while(choice !=4);
}

Output:
1.push 2.pop 3.display 4.exit Enter choice (1-4) 1
Enter item 33
1.push 2.pop 3.display 4.exit Enter choice (1-4) 1

Stacks and Queues

Computer Science 181

Enter item 54
1.push 2.pop 3.display 4.exit Enter choice (1-4) 3
The elements in the stack are
54 33
1.push 2.pop 3.display 4.exit Enter choice (1-4) 2
poped item is 54
1.push 2.pop 3.display 4.exit Enter choice (1-4) 2
poped item is 33
1.push 2.pop 3.display 4.exit Enter choice (1-4) 2
Underflow
1.push 2.pop 3.display 4.exit Enter choice (1-4) 4

Stack can be represented using linked list. Initially TOP value is NULL. The elements

in the linked list are as follows. The following stack has three elements.

In this representation, the elements are stored as nodes where each node contains two fields.

The first field is called “info” and the second field is called “link”. Info conations the data and

link contains the address of the successor (next node). In this list, insertions and deletions are

restricted to top only.

If we delete one element from the stack, the stack will be as follows.

The following algorithm illustrates push operation.

Linked Representation of Stack9.5

Stacks and Queues

182 Computer Science

PUSH (TOP, ITEM)

TOP holds the address of top node. ITEM is value to be inserted.

STEP 1: Create a newnode and store its address in the variable NEWNODE

STEP 2: IF NEWNODE = Null, then print “UNDERFLOW “ and rerurn

STEP 3: SET NEWNODE ->INFO = ITEM and NEWNODE->LINK = TOP

STEP 4: SET TOP =NEWNODE

SETP 5: RETURN

The following algorithm is prepared to delete an element from the stack.

POP (TOP, ITEM)

TOP holds the address of the first node of the stack.

ITEM is a variable that holds the popped item.

STEP 1: IF TOP = Null, then print “UNDERFLOW “and exit

STEP 2: SET TEMP = TOP.

STEP 3: SET TOP = TOP->LINK.

STEP 4: SET ITEM = TEMP->INFO.

STEP 5: RETURN.

9.5.1 C program for linked representation of stack

/*Linked representation of stack*/

#include<stdio.h>
#include<alloc.h>

struct node
{
 int info;
 struct node *link;
};

struct node *top=NULL;

/*push function*/
void push()
{
 int item;

Stacks and Queues

Computer Science 183

 struct node *newnode;
 newnode=(struct node*)malloc(sizeof(struct node));

 if(newnode==NULL)
 printf(“overflow\n”);
 else
 {
 printf(“Enter item “);
 scanf(“%d”,&item);
 newnode->info=item;
 newnode->link=top;
 top=newnode;
 }
}

/*pop function*/
void pop()
{
 struct node *temp;
 int item;

 if(top==NULL)
 printf(“Underflow \n”);
 else
 {
 temp=top;
 top=top->link;
 printf(“Deleted item is %d\n”,temp->info);
 free(temp);
 }
}

/*function to display values in the stack*/

void display()
{
 struct node *ptr;

 ptr=top;

Stacks and Queues

184 Computer Science

 while(ptr!=NULL)
 {
 printf(“%d “,ptr->info);
 ptr=ptr->link;
 }
 printf(“\n”);
}

/*main block*/

void main()
{

 int ch;
 clrscr();
 do{
 printf(“1.push 2.pop 3.display 4.exit “);
 scanf(“%d”,&ch);
 switch(ch)
 {

case 1:push();
 break;
case 2:pop();
 break;
case 3:display();
 break;

 }
 }while(ch!=4);
}

output:

1.push 2.pop 3.display 4.exit 1
Enter item 11
1.push 2.pop 3.display 4.exit 1
Enter item 33
1.push 2.pop 3.display 4.exit 1
Enter item 55
1.push 2.pop 3.display 4.exit 1
Enter item 66
1.push 2.pop 3.display 4.exit 3

Stacks and Queues

Computer Science 185

66 55 33 11
1.push 2.pop 3.display 4.exit 2
Deleted item is 66
1.push 2.pop 3.display 4.exit 2
Deleted item is 55
1.push 2.pop 3.display 4.exit 2
Deleted item is 33
1.push 2.pop 3.display 4.exit 3
11
1.push 2.pop 3.display 4.exit 2
Deleted item is 11
1. push 2.pop 3.display 4.exit 2
Underflow
1. push 2.pop 3.display 4.exit 4

9.6 APPLICATIONS OF STACK

9.6.1 To evaluate the value of a postfix expression

An arithmetic expression can be represented in three ways.

1) Infix.

2) Prefix.

3) Postfix.

We have an expression a + b. This representation is infix representation,

+a b is prefix representation. a b + is postfix representation.

(a+b)/(c-d) is given infix expression.

ab+cd-/ is equivalent postfix expression.

To evaluate the postfix expression we use stack.

The following algorithm evaluates the given infix expression into postfix expression.

Algorithm: This algorithm finds VALUE of a postfix expression P.

STEP 1: Add a right “#” to postfix expression P.

STEP 2: Scan P from left to right and repeat Steps 3 to 5 for each element of P until

“#” is encountered.

Stacks and Queues

186 Computer Science

STEP 3: If an operand is encountered, put it on STACK.

STEP 4: If an operator Ë% is encountered, then:

(a) Pop two elements from the stack and store them in variables A and B.

Where A is stack of top element and B is the next to stack of top.

(b) Evaluate B o A.

(c) Place the the result in the stack.

STEP 5: Set VALUE equal to the top element on Stack.

STEP 6: Return.

Queue is a linear data structure in which insertion takes place at one end called “front”

and deletion takes place at the other end called “rear”. Queue is also called first-in-first-out (FIFO).

The order in which the elements are entered in a queue will be the first element out of

the queue.

Example: Passengers waiting at railway ticket reservation counter for getting tickets.

A queue can be represented by using a linear array. Suppose Queue is a linear array with

size N. We use two variables one for FRONT and the other for REAR. Initially FRONT and

REAR are initialised to NULL.

9.8.1 QINSERT (QUEUE, FRONT, REAR, N, ITEM)

Queue is a linear array with size N. The variables FRONT and REAR point the first and

last elements of the queue, respectively.. ITEM is the variable, which holds the value to be inserted

into the queue.

STEP 1: IF FRONT=NULL and REAR = FRONT + 1 ,

 THEN WRITE (“OVERFLOW “) and Return.

STEP 2: IF FRONT = NULL, THEN SET FRONT = 1 and REAR = 1

 ELSE

Definition of Queue9.7

Array representation of Queue9.8

Stacks and Queues

Computer Science 187

 IF REAR = N THEN

 SET FRONT = 1

 ELSE

 SET FRONT = FRONT + 1

STEP 3: SET QUEUE[REAR] = ITEM

STEP 4: RETURN

The following procedure explains how to delete an element from the queue.

9.8.2 QDELETE (QUEUE, FRONT, REAR, N, ITEM)

Queue is a linear array with size N. The variables FRONT and REAR point the first and

last elements of the queue, respectively. ITEM is the variable,which holds the deleted item from

the queue.

STEP 1: IF FRONT = NULL, then write (“Underflow “) and return.

STEP 2: SET ITEM = QUEUE [FRONT]

STEP 3: IF FRONT = REAR, THEN

 SET FRONT = NULL and REAR = NULL

 ELSE

 IF FRONT = N THEN

 SET FRONT = 1

 ELSE

 SET FRONT = FRONT + 1

STEP 4: RETURN.

Example: Consider the following example. Queue is a linear queue with size 4 i.e. N. Initially
front = -1 and rear = -1.

Then queue

Front = 0 and Rear = 0

Let us suppose we want to insert an element ITEM value is 10.

Front = 0 and rear = 0

Stacks and Queues

188 Computer Science

Insert 20 into the queue

Then queue becomes

Front = 1 and Rear = 2

Insert 30 into the queue

Then queue becomes

Front = 1 and Rear = 3.

Insert 40 into the queue.

Front = 1 and Rear = 4.

Insert 50 into the queue.

We cannot insert this element into the queue "over" occurs.

Delete an element from the queue

Deleted item is 10. Front = 2 and Rear = 4

Queue becomes

Then Front = 2 and Rear = 4

Now insert an element 60 into the queue. Then queue becomes

Front = 2 and Rear = 1.

Insert 40 into the queue. Queue is overflow. We cannot insert an element into the queue.

Stacks and Queues

Computer Science 189

9.8.3 PROGRAM FOR IMPLEMENTATION OF QUEUE USING ARRAY

/*QUEUE using array */

#include<stdio.h>
#define N 4
int queue[N],front = -1 ,rear = -1;

/*function to insert an element into the queue*/
void qinsert()
{
 int item;
/*checks the whether queue is full or not*/
 if ((front==0)&&(rear==(N-1))||(front == rear + 1))
 printf(“Overflow \n”);
 else
 {
 printf(“Enter item “);
 scanf(“%d”,&item);
 if(front == -1)
 {

 front = 0;
 rear = 0;

 }
 else
 if(rear == N-1)

 rear = 0;
 else

 rear ++;
 queue[rear]=item;
 }
}

/* function to delete an element from the queue*/

void qdelete()
{
 int item;

/*checks whether queue is empty or not*/
 if(front == -1)

Stacks and Queues

190 Computer Science

 printf(“Underflow\n”);
 else
 {
 item = queue[front];
 printf(“Delted item is %d\n”,item);
 if(front ==rear)
 {

 front = -1;
 rear = -1;

 }
 else
 if(front == N-1)

front = 0;
 else

front ++;
 }
}

/*Function to display elements form the queue*/

void qdisplay()
{
 int i;

 if(front != -1)
 {
 if(front<=rear)
 {
 for(i=front;i<=rear;i++)
 {

printf(“%d “,queue[i]);
 }
 }
 else
 {

 for(i=front;i<=(N-1);i++)
 printf(“%d “,queue[i]);
 for(i=0;i<=rear;i++)
 printf(“%d “,queue[i]);
 }

 printf(“\n”);
 }

Stacks and Queues

Computer Science 191

}

/*main block*/
void main()
{
 int ch;

 clrscr();
 do{
 printf(“1.insert 2.delete 3.display 4.exit “);
 scanf(“%d”,&ch);
 switch(ch)
 {

 case 1: qinsert();
 break;

 case 2: qdelete();
 break;

 case 3: qdisplay();
 break;

 }
 }while(ch!=4);
}

Output:

1.insert 2.delete 3.display 4.exit 1
Enter item 22
1.insert 2.delete 3.display 4.exit 1
Enter item 55
1.insert 2.delete 3.display 4.exit 1
Enter item 66
1.insert 2.delete 3.display 4.exit 1
Enter item 77
1.insert 2.delete 3.display 4.exit 3
22 55 66 77
1.insert 2.delete 3.display 4.exit 1
Overflow
1.insert 2.delete 3.display 4.exit 2
Delted item is 22
1.insert 2.delete 3.display 4.exit 3
55 66 77

Stacks and Queues

192 Computer Science

1.insert 2.delete 3.display 4.exit 1
Enter item 90
1.insert 2.delete 3.display 4.exit 3
55 66 77 90
1.insert 2.delete 3.display 4.exit 4

A queue can be represented using linked list. In this, we use two pointers one is front and

the other pointer is rear. In a linked list, insertion takes place at one end and deletion takes place

at first. This restricted linked list is nothing but queue with two pointers front and rear. This can

be depicted with the following diagram.

In this example front points the first node and rear points the last node. If we insert one

more item, say “d” into the queue, then queue becomes as follows.

We delete an element from queue. The deleted item is a. Then, the queue becomes as follows.

Linked representation of queue9.9

Stacks and Queues

Computer Science 193

9.9.1 C program for Linked Queue

/*C program for linked representation of queue*/

#include<stdio.h>
#include<alloc.h>

/*Declaring a node*/

struct node
{
 int info;
 struct node *link;
};

struct node *front=NULL,*rear=NULL;

/*Function to insert an element into the queue*/

void qinsert()
{
 struct node *newnode;
 int item;
/*creates a newnode*/
 newnode=(struct node*)malloc(sizeof(struct node));
 if(newnode==NULL)
 printf(“overflow\n”);
 else
 {
 printf(“Enter item “);
 scanf(“%d”,&item);
 newnode->info=item;
 newnode->link=NULL;
 if(front==NULL)
 {
 front=newnode;
 rear=newnode;
 }
 else
 {
 rear->link=newnode;

Stacks and Queues

194 Computer Science

 rear=newnode;
 }
 }
 }

/* Function to delete an element from the queue*/

 void qdelete()
 {
 int item;
 struct node *temp;
/*checks whether queue is empty or not */
 if(front==NULL)
 printf(“Underflow \n”);
 else
 {
 temp=front;
 printf(“Deleted item is %d\n”,temp->info);
 if(front==rear)
 {

 front = NULL;
 rear = NULL;

 }
 else

 front =front ->link;
 free(temp);
 }
 }

 /*Funtion to dispaly elements in the queue*/

 void qdisplay()
 {
 struct node *ptr;

 if(front !=NULL)
 {
 for(ptr=front;ptr!=NULL;ptr=ptr->link)

printf(“%d “,ptr->info);
 printf(“\n”);
 }

Stacks and Queues

Computer Science 195

 }

/*main block*/
 void main()
 {
 int ch;

 clrscr();
 do{

printf(“1.qinsert 2.qdelete 3.qdisplay 4.exit “);
scanf(“%d”,&ch);
switch(ch)
{
 case 1: qinsert();

 break;
 case 2: qdelete();

 break;
 case 3: qdisplay();

 break;
 }
 }while(ch!=4);
 }

Output:

1.qinsert 2.qdelete 3.qdisplay 4.exit 1
Enter item 11
1.qinsert 2.qdelete 3.qdisplay 4.exit 1
Enter item 44
1.qinsert 2.qdelete 3.qdisplay 4.exit 1
Enter item 99
1.qinsert 2.qdelete 3.qdisplay 4.exit 3
11 44 99
1.qinsert 2.qdelete 3.qdisplay 4.exit 1
Enter item 34
1.qinsert 2.qdelete 3.qdisplay 4.exit 2
Deleted item is 11
1.qinsert 2.qdelete 3.qdisplay 4.exit 3
44 99 34
1.qinsert 2.qdelete 3.qdisplay 4.exit 4

Stacks and Queues

196 Computer Science

If a set of jobs are given for printing, then all the jobs are stored in the print queue. The

order in which they entered into the queue, in the same order only the jobs are sent to printer

by the C.P.U. This is one of the applications of the queue.

This lesson covered defintion of stack, representation of stack in the computer memroy,

operations on stack such as push and pop. Applications of stack such as evaluation of a postfix

expression was also covered.

We have also covered the definition of queue, representaion of queue, operations on queue

such as insertion and deletion.

Very short answer Questions

1. Define Stack.

2. Define Queue.

3. What are the operations that can be performed on a stack?

4. What is LIFO?

5. What is FIFO?

6. What are the operations that can be performed on a queue?

7. What are the applications of stacks and queues?

Short answer Questions

1. Write algorithms for push and pop.

2. Write algorithms to insert and delete elements in a queue.

3. Write an algorithm to evaluate the value of a postfix expression.

Applications of Queue9.10

Summary9.11

Terminal Questions9.12

Stacks and Queues

Computer Science 197

Essay type Questions

1. Define Stack. How do you represent stack in the memory?

2. Write algorithms to insert and delete elements in a Stack.

3. Define Queue. Explain various representations of queues in the memory.

4. Write algorithms to insert and delete elements in the Queue.

5. Write a C program to insert and delete elements in a stack using array.

6. Write a C program to insert and delete elements in a stack using linked list.

7. Write a C program to insert and delete elements in queue using array.

8. Write a C program to insert and delete elements in queue using linked list .

Sorting and Searching

198 Computer Science

10
Sorting and Searching

Introduction10.1

Sorting and Searching are the two important features frequently used in programming.

Sorting is a process of arranging information in an order. Searching is a process of seeking an

element in a pool of values. Two types of sorting techniques are used. One is internal and the

other is external sorting. In this chapter, we discuss only internal sorting methods such as bubble

sort, insertion sort and selection sort. As far as searching techniques are concerned, we only study

sequential search and binary search techniques.

After going through this lesson, you will be able to define the following concepts.

• Linear Search

• Binary Search

• Selection Sort

• Insertion Sort

• Bubble Sort

Let DATA be a collection of data elements in memory. Let an ITEM of information

is given. Searching refers to finding the position of the ITEM in the given DATA. Search is

said to be successful if ITEM is in the DATA, unsuccessful otherwise.

Objectives10.2

Searching10.3

Sorting and Searching

Computer Science 199

There are two types of searching techniques

1) Linear Search. and 2) Binary Search.

Suppose DATA is an array with ‘n’ elements. ITEM is information to be searched in

the DATA. In the linear search, we compare the ITEM with the first value in the array i.e. DATA

[1]. If both are equal, then we terminate the search process and search is successful. If both

are different, we continue the searching process by comparing the second element. If there is

a match, we terminate the process. Otherwise, we continue the process by choosing the third

element. We compare the third element with ITEM. If both are equal, we terminate the process

and otherwise, we choose the next element in the DATA. If all the ‘n’ elements are compared,

and if there is no match in the array, we terminate the searching process and in this case search

is unsuccessful.

This search is also called sequential search.

The disadvantage of Linear Search is that, if the array size is big, the search consumes

more time.

The following algorithm represents Linear Search.

10.4.1. Algorithm for Linear Search (DATA, N, ITEM, POSITION)

In this, DATA is a linear array, N is the size of the array, ITEM represents information

to be searched and POSITION represents the item location in the array. POSITION has 0, if

ITEM is not in the array.

Step1: Repeat steps 2 and 3 for i = 1 to n

Step2: if DATA (I) = ITEM, then go to step 4.

Step3: set i= i+ 1

Step4: if DATA (I) = ITEM, then

 Position=i

 Print “item found at “, position

 Else

 Position=0

Linear Search10.4

Sorting and Searching

200 Computer Science

 Print “item not found “

 End if

Step 5: return

Example:

Suppose, if the size of the array, i.e. DATA is 5.

The values in the array are

 Position: [1] [2] [3] [4] [5]

 DATA: 10 19 22 14 16

Case 1:

ITEM = 22

First, we compare the first element in the array with ITEM. If both are not equal, then

we compare with second element (i.e.) 19. In this case, ITEM and second element are not equal,

and then we compare the third element in the array, which is 22 with ITEM. If both are equal,

we store the location into the variable POSITION. We terminate the process. In this case, search

is successful.

Case 2:

ITEM = 98.

First, we compare 98 with 10, which is the first element in the array. As they are not

equal, we compare it with second element i.e. 19. As they don’t match, we compare the third

element with ITEM. Both are not equal. Then, we compare the fourth element, which is 14 with

ITEM. Since they are not equal, we choose last element in the array, which is 16. Compare

16 with 98. Both are not equal. As no element in the array matched with the ITEM, search is

said to be unsuccessful.

10.4.2 C Program for Linear Search
/* c program for linear search*/

#include<stdio.h>

/*funtion to read values into the array*/

Sorting and Searching

Computer Science 201

void read_array(int a[50],int n)

{

 int i;

 for(i=1;i<=n;i++)

 {

 printf(“Enter a number “);

 scanf(“%d”,&a[i]);

 }

}

/*function to print values from an array*/

void print_array(int a[50],int n)

{

 int i;

 for(i=1;i<=n;i++)

 printf(“%d “,a[i]);

 printf(“\n”);

}

/*function to implement linear search*/

void linear_search(int data[50],int item,int n)

{

 int i;

 int position=-1;

 for(i=1;i<=n;i++)

 if(data[i]==item)

 break;

 if(data[i]==item)

Sorting and Searching

202 Computer Science

 {

 position=i;

 printf(“item found at the location %d\n”,position);

 }

 else

 printf(“item not found “);

}

/*main block*/

void main()

{

 int data[50],n,item;

 clrscr();

 printf(“Enter the number of elements(max.50) “);

 scanf(“%d”,&n);

 read_array(data,n);

 printf(“Enter item to be scanned”);

 scanf(“%d”,&item);

 print_array(data,n);

 /*linear search function is invoked*/

 linear_search(data,item,n);

}

output:

First run:

Enter the number of elements (max.50) 5

Enter a number 22

Enter a number 3

Enter a number 45

Enter a number 66

Sorting and Searching

Computer Science 203

Enter a number 34

Enter item to be scanned 45

22 3 45 66 34

Item found at the location 3

Second run:

Enter the number of elements (max.50) 5

Enter a number 23

Enter a number 45

Enter a number 67

Enter a number 89

Enter a number 67

Enter item to be scanned 90

23 45 67 89 67

Item not found

Suppose DATA is an array, which is already sorted in the ascending order. Then, we

can implement binary search.

Suppose, we want to find the location of some name in a telephone directory.

We may use Linear Search to find the location of the item in the array. Since data is

sorted in a sorted order, we can use binary search for quicker retrieval.

If we open the directory in the middle, to determine which half contains the name being

sought, then open that half in the middle to determine which quarter of the directory contains

the name. Then, one opens that quarter in the middle to determine which eighth of the directory

contains the names and so on.

The following algorithm illustrates BINARY SEARCH

10.5.1 BINARY_SEARCH (DATA, LB, UB, ITEM, POSITION)

In this DATA is Linear Array with LB (Lower Bound) and UB (Upper Bound) as

respective bounds of the Linear Array. ITEM is given value to be searched. POSITION contains

the location of the ITEM. If ITEM is not in the array, POSITION conations zero.

Binary Search10.5

Sorting and Searching

204 Computer Science

step1: BEG = LB and END = UB

step2: MID = INT ((BEG+END)/2)

setp3: Repeat steps 4 to 5 while (BEG<=END) and (DATA [MID]! = ITEM)

step4: If ITEM < DATA [MID] THEN

 MID=END-1

 Else

 BEG=MID+1

 end if

Step 5: mid= int ((BEG+END)/2)

step6: if DATA [MID] = ITEM then

 POSITION=MID

 Else

 POSITION = NULL

 end if

Step 7: return

Example :

Let DATA be the sorted array with nine elements.

 Position: [1] [2] [3] [4] [5] [6] [7] [8] [9]

 DATA: 10 20 30 40 50 60 70 80 90

Case (a): Suppose ITEM= 30

Initially BEG =1 and END = 9

MID= INT [(BEG+END)/2]

 = INT [(1+9)/2] =5

DATA [MID] = 50

30 < 50

Then END = MID -1

Sorting and Searching

Computer Science 205

 = 5-1 =4

 MID= INT [(BEG+END)/2] =INT [(1+4)/2]

 = INT [7/2] = 2 ???

DATA [MID] = 20

ITEM = 30

 30 > 20

Then BEG= MID + 1

 = 2 + 1 = 3.

MID =INT [(BEG+END)/2] = INT [(3+4)/2]

 =INT [7/2] =3
 ???

DATA [MID] = 30 and ITEM = 30

Both are equal.

Then, POSITION = 3

Case (b): Suppose ITEM= 75

BEG = 1 AND END = 9

MID = INT [(BEG + END)/2]

 = INT [(1+9)/2]

 = 5

DATA [MID] = 50

75 > 50

Then, BEG = MID + 1 = 5 + 1 = 6

MID = INT [(BEG+END)/2] =INT [(6+9)/2] = 7

Sorting and Searching

206 Computer Science

DATA [MID] =70

75> 70

 Then BEG = MID + 1 = 7 + 1 =8

BEG = 8 and END = 9

MID = INT [(BEG+END)/2] = INT [(8+9)/2] = INT [17/2] = 8

DATA [MID] = 80

75< 80

Then, END = MID -1 = 8 -1 = 7

BEG <= END is false.

Therefore, ITEM is not in the array.

10.5.2 C PROGRAM FOR BINARY SEARCH

/* c program for binary search*/

#include<stdio.h>

/*funtion to read values into the array*/

void read_array(int a[50],int n)

{

 int i;

 for(i=1;i<=n;i++)

 {

 printf(“Enter a number “);

 scanf(“%d”,&a[i]);

 }

Sorting and Searching

Computer Science 207

}

/*function to print values from an array*/

void print_array(int a[50],int n)

{

 int i;

 for(i=1;i<=n;i++)

 printf(“%d “,a[i]);

 printf(“\n”);

}

/*function to implement linear search*/

void binary_search(int data[50],int lb,int ub,int item)

{

 int i,position,beg,end,mid;

 beg=lb;

 end=ub;

 mid=(beg+end)/2;

 while((beg<=end)&&(data[mid]!=item))

 {

 if(item<data[mid])

 end=mid-1;

 else

 beg=mid+1;

 mid=(beg+end)/2;

 }

 if(data[mid]==item)

 {

position=mid;

printf(“item found at location %d “,position);

 }

Sorting and Searching

208 Computer Science

 else

printf(“item not found “);

}

/*main block*/

void main()

{

 int data[50],n,item;

 clrscr();

 printf(“Enter the number of elements(max.50) “);

 scanf(“%d”,&n);

 printf(“Enter values in the ascending order \n”);

 read_array(data,n);

 printf(“Enter item to be scanned”);

 scanf(“%d”,&item);

 print_array(data,n);

 /*binary search function is invoked*/

 binary_search(data,1,n,item);

}

Enter the number of elements (max.50) 5

Enter values in the ascending order

Enter a number 10

Enter a number 20

Enter a number 30

Enter a number 40

Enter a number 50

Sorting and Searching

Computer Science 209

Enter item to be scanned 40

10 20 30 40 50

Item found at location 4

Enter the number of elements (max.50) 5

Enter values in the ascending order

Enter a number 10

Enter a number 20

Enter a number 30

Enter a number 40

Enter a number 50

Enter item to be scaned45

10 20 30 40 50

Item not found

 Suppose A is a linear array with N elements. In the selection sort, first we find the minimum

in the list 1 to n and interchange minimum value with the A [1].

 Then, we consider the sub list from 2 to N. Let the minimum is in the location, say, min-

loc. We interchange A [2] with A [min-loc].

 We repeat the process up to the list A [N-1], A [N]. After (N-1) passes the elements in

the array are sorted in the ascending order.

The following algorithm illustrates selection sort.

10.6.1 SELECTION-SORT (A, N)

Here A is the linear array with N elements.

STEP 1: Repeat steps for I = 1 to N-1

STEP 2: CALL MIN (A, I, N, MIN-LOC)

STEP 3: SET TEMP= A [K]

Selection Sort10.6

Sorting and Searching

210 Computer Science

STEP 4: SET A [K] =A [MIN-LOC]

STEP 5: SET A [K] =TEMP

STEP 6: Return.

MIN (A, K, N, MIN-LOC)

A is the array with N elements. This procedure finds minimum in the list A [K], A [K+1],.......,

A[N] minimum and stores in the location MIN-LOC.

STEP 1: MINIMUM= A [K] and MIN-LOC= K

STEP 2: Repeat the step 3 for J = K to N

STEP 3: If (A[j] <MINIMUM) Then

 MINIMUM=A[j] and MIN-LOC = j

 End if

 STEP 4: return

Example:

Consider the following example for selection sort.

Position [1] [2] [3] [4] [5]

 A 19 13 22 14 16

Here N is 5.

Consider the list from A [1] TO A [5].

Minimum is in the location 2. Then, interchange the elements A[1] and A[2]. After interchanging

the elements, the elements in the list are

 Position [1] [2] [3] [4] [5]

 A 13 19 22 14 16

Sorting and Searching

Computer Science 211

Now consider the sub list from A [2], A [3],...A[5]

Find the minimum. It is 14, which is in the location 4. Then, interchange elements A [2] and

A [4]. Then, list has following elements.

 Position [1] [2] [3] [4] [5]

 A 13 14 22 19 16

Now consider the sub list from A[3],...A[5]

Find the minimum. This is 16 and it is in the location 5. Then, interchange elements A[3] and

A[5]. Then list has following elements

 Position [1] [2] [3] [4] [5]

 A 13 14 16 19 22

Now consider the sub list from A [4],...A[5]

Find the minimum. That is 19, which is in the location 4. Then, interchange elements A[4] and

A[4]. Then list has following elements

 Position [1] [2] [3] [4] [5]

 A 13 14 16 19 22

Finally sorted data are

 13, 14,16,19,22

10.6.2 SELECTION SORT PROGRAM IN C

/* c program for selection sort*/

#include<stdio.h>

/*funtion to read values into the array*/

Sorting and Searching

212 Computer Science

void read_array(int a[50],int n)

{

 int i;

 for(i=1;i<=n;i++)

 {

 printf(“Enter a number “);

 scanf(“%d”,&a[i]);

 }

}

/*function to print values from an array*/

void print_array(int a[50],int n)

{

 int i;

 for(i=1;i<=n;i++)

 printf(“%d “,a[i]);

 printf(“\n”);

}

/*Function to find the minimum */

void min(int a[50],int k,int n,int *min_loc)

{

 int minimum,j;

 minimum=a[k];

 *min_loc=k;

 for(j=k;j<=n;j++)

 if(a[j]<minimum)

 {

minimum=a[j];

*min_loc=j;

Sorting and Searching

Computer Science 213

 }

}

/*function for selection sort*/

void selection_sort(int a[50],int n)

{

 int i,temp,location;

 for(i=1;i<=n-1;i++)

 {

 min(a,i,n,&location);

 temp=a[location];

 a[location]=a[i];

 a[i]=temp;

 }

}

/*main block*/

void main()

{

 int a[50],n,item;

 clrscr();

 printf(“Enter the number of elements(max.50) “);

 scanf(“%d”,&n);

 printf(“Enter values \n”);

 read_array(a,n);

 selection_sort(a,n);

 printf(“Sorted elements are \n”);

 print_array(a,n);

}

Sorting and Searching

214 Computer Science

Output:

Enter the number of elements (max.50) 5

Enter values

Enter a number 11

Enter a number 2

Enter a number 33

Enter a number 44

Enter a number 5

Sorted elements are

2 5 11 33 44

Suppose A is a linear array with N elements.

In the insertion sort we place each element in its appropriate position. We place -” in

the A [0] location.

Then A [1] is trivially sorted. Then A [2] is inserted in its appropriate position i.e. before

or after A [1]. Then A [1] and A [2] are sorted.

Then A[3] is inserted in its appropriate position from A[1],A[2] and A[3]. We continue

this process for n-1 times.

The following example illustrates selection sort procedure.

Let A is an array containing 5 elements.

Position [0] [1] [2] [3] [4] [5]

 A - ∞ 10 12 7 14 19

A [0] contains the least element that - .

A [1] > A [0], So A [1] is sorted. Then we choose A [2].

Insertion Sort10.7

Sorting and Searching

Computer Science 215

A [2] >A [1], hence A [2] is sorted.

Now, choose A [3] whose value is 7. Now compare A [3] with its previous element, which

is 12.

 7 < 12

 Then copy 7 into to a variable called Item, and copy the element A [2] into A [3]. Now compare

item with A [1].

7 < 10

Then copy 10 into A [2] location.

Now compare 7 with A [0] element.

7>-

∞

Then copy item into A [1] location.

After this pass, the values in the array are

Position [0] [1] [2] [3] [4] [5]

 A - ∞ 7 10 12 14 19

Now choose A [4] element as it is greater than its previous element, we do not change its position.

Finally, we choose A [5] whose value is 19, which is greater than its previous value. Hence,

we do not change its value.

After final pass, the elements are

Position [0] [1] [2] [3] [4] [5]

 A - ∞ 7 10 12 14 19

Sorting and Searching

216 Computer Science

10.7.1 Algorithm INSERTION_SORT (A, N)

 A is a linear array with N elements.

STEP 1: Set A [0] = - ∞

STEP 2: Repeat Steps 2 to 7 for I = 2 to N

STEP 3: SET ITEM = A [I] and J = I - 1

STEP 4: Repeat STEPS 5 and 6 while TEMP < A [J]

STEP 5: A [J+1] = A [J]

STEP 6: SET J = J – 1

STEP 7: A [J+1] =ITEM

STEP 8: return.

10.7.2 C Program for Insertion Sort

/* c program for insertion sort*/

#include<stdio.h>

/*funtion to read values into the array*/

void read_array(int a[50],int n)

{

 int i;

 for(i=1;i<=n;i++)

 {

 printf(“Enter a number “);

 scanf(“%d”,&a[i]);

 }

}

Sorting and Searching

Computer Science 217

/*function to print values from an array*/

void print_array(int a[50],int n)

{

 int i;

 for(i=1;i<=n;i++)

 printf(“%d “,a[i]);

 printf(“\n”);

}

/*Function for selection sort*/

void insertion_sort(int a[50],int n)

 {

 int i,j,item;

 a[0]=-32768;

 for(i=2;i<=n;i++)

 {

 item=a[i];

 j=i-1;

 while(item<a[j])

{

 a[j+1]=a[j];

 j=j-1;

}

 a[j+1]=item;

 }

 }

/*main block*/

void main()

Sorting and Searching

218 Computer Science

{

 int a[50],n,item;

 clrscr();

 printf(“Enter the number of elements(max.50) “);

 scanf(“%d”,&n);

 printf(“Enter values \n”);

 read_array(a,n);

 insertion_sort(a,n);

 printf(“Sorted elements are \n”);

 print_array(a,n);

}

Output:

Enter the number of elements (max.50) 5

Enter values

Enter a number 22

Enter a number 34

Enter a number 32

Enter a number 5

Enter a number 6

Sorted elements are

5 6 22 32 34

Let A be a linear array with n elements. In the bubble sort, first we compare A [1] and

A [2]. If A [1] > A [2], then, we swap A [1] and A [2]. Then, we compare A [2] and A [3].

We continue the comparison process up to A [N-1] and A [N]. This is one pass.

Bubble Sort10.8

Sorting and Searching

Computer Science 219

In pass 2, we compare adjacent elements from A [1] with A [2]. If A [1] >A [2], then we

exchange A [1] with A [2]. Then, we compare A [2] with A [3]. If A [2]>A [3], then we swap

A [2] with A [3]. We continue this process up to A [N-2] with A [N-1]. This is second pass..

In the third, we compare up to N-2.

We continue the process for N-1 passes.

Consider the following example.

position [1] [2] [3] [4] [5]

 A 19 12 11 9 14

Here A is a linear array with 5 elements.

Pass 1: compare A [1] with A [2]

 19 > 12

 Since 19 is greater than 12, then swap 19 and 12

 The list becomes 12, 19, 11, 9, 14.

 Now compare A [2] with A [3]

 19 > 11

 Then, swap 19 and 11

 The list becomes 12, 11, 19, 9, 14.

 Now compare A [3] with A [4]

 19 > 9

 Then swap 19 and 9 .Then list becomes 12, 11, 9, 19, 14.

 Now compare A [4] and A [5]

 19 > 14

 Then swap 19 and 14. Then list becomes 12, 11, 9, 14, 19

Sorting and Searching

220 Computer Science

 pass2: 12, 11,9,14,19

 11,12,9,14,19

 11,9,12,14,19

 pass3: 11,,9,12,14,19

 9,11,12,14,19

 pass4 : 9,11,12,14,19

 9,11,12,14,19

 Here A is a linear array with N elements.

 Step 1: Repeat steps 2 to 5 for I = 1 to N-1

 Step 2: set J = 1

 Step 3: Repeat while j<=N – I

 Step 4: if A [J] > A [J+1], then

 Temp=A [J]

 A [J] =A [J+1]

 A [J+1] =temp

 End if

 Step 5: set J = J + 1

 Step 6: return

Algorithm for BUBBLE_SORT(A,N)10.9

Sorting and Searching

Computer Science 221

10.9.1 C program for bubble sort
/* c program for bubble sort*/

#include<stdio.h>

/*funtion to read values into the array*/

void read_array(int a[50],int n)

{

 int i;

 for(i=1;i<=n;i++)

 {

 printf(“Enter a number “);

 scanf(“%d”,&a[i]);

 }

}

/*function to print values from an array*/

void print_array(int a[50],int n)

{

 int i;

 for(i=1;i<=n;i++)

 printf(“%d “,a[i]);

 printf(“\n”);

}

/*Function for bubble sort*/

void bubble_sort(int a[50],int n)

 {

 int i,j,temp;

Sorting and Searching

222 Computer Science

 for(i=1;i<=n-1;i++)

 {

 j=1;

 while(j<=(n-i))

 {

 if(a[j]>a[j+1])

{

 temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

}

j=j+1;

 }

 }

 }

/*main block*/

void main()

{

 int a[50],n,item;

 clrscr();

 printf(“Enter the number of elements(max.50) “);

 scanf(“%d”,&n);

 printf(“Enter values \n”);

 read_array(a,n);

 bubble_sort(a,n);

 printf(“Sorted elements are \n”);

 print_array(a,n);

}

Sorting and Searching

Computer Science 223

Enter the number of elements (max.50) 5

Enter values

Enter a number 5

Enter a number 4

Enter a number 3

Enter a number 2

Enter a number 1

Sorted elements are

1 2 3 4 5

In this lesson, we discussed about sorting techniques such as bubble sort, selection sort

and insertion sort.

This lesson also covered searching techniques such as linear search and binary search.

Very short answer questions

1. Define sorting.

2. What is meant by internal sorting?

3. Define Searching.

4. What is the advantage of the binary search technique when compared to linear search?

Short answer Questions

1. Write an algorithm for bubble sort

2. Write an algorithm for selection sort.

3. Write an algorithm for insertion sort.

4. Write an algorithm for linear search.

5. Write an algorithm for binary search.

Summary10.10

Terminal questions10.11

Sorting and Searching

224 Computer Science

Essay type Questions

1. What is searching? Explain the concept of linear search with the help of an example.

2. Write a C program to implement Linear Search.

3. What do you understand by binary search? Prepare an algorithm to explain binary search.

4. Write a “C” program for binary search.

5. Write an algorithm for bubble sort. Explain with the help of an example

6. Write an algorithm and C program for selection sort.

7. Write a C program and an algorithm for insertion sort

8. Sort the following elements using

a) Selection sort b) bubble sort and c) insertion sort.

99, 33, 44, 55, 66, 77, 88, 11.

